
Test Data Provision for ERP Systems

Sebastian Wieczorek, Alin Stefanescu

SAP Research CEC Darmstadt
Bleichstraße 8, D-64283 Darmstadt

sebastian.wieczorek@sap.com,
alin.stefanescu@sap.com

Ina Schieferdecker

Fraunhofer Institute for Open
Communication Systems (FOKUS)

Kaiserin-Augusta-Allee 31, D-10589 Berlin
ina.schieferdecker@fokus.fraunhofer.de

Abstract

Software development and testing of Enterprise
Resource Planning (ERP) systems demands dedicated
methods to tackle its special features. As manual
testing is not able to systematically test ERP systems
due to the involved complexity, an effective testing
approach should be automated, also requiring that the
appropriate test data has to be provided alongside. In
this paper we identify four main challenges regarding
the provision of test data for automatic testing of ERP
software: system test data supply, system test data
stability, input test data constraints and test data
correlation. Several possible solutions to these
challenges are discussed. We conclude with an outlook
to possible research activities.

1. Introduction

In the eve of industrialization of software
development, automation is playing a major rôle. As a
way to validate the software quality, software testing
puts a lot of effort in automation as well. Over the
time, we have seen manual testing enhanced by capture
and replay capabilities, then test scripting languages
were employed for automation, especially for the
regression testing [8]. Test data is very important if we
want to have a seamless test automation process. In
this paper we will discuss several problems regarding
ERP test data provision that can be identified in the
area of functional testing of ERP systems.

Enterprise Resource Planning (ERP) software
[14,22] is built to support business processes for whole
companies. SAP, the world’s leading provider of
business software, has a large history of developing
ERP systems. Such software systems are very
complex: e.g. SAP R/3 consists of over 250 million
lines of code [15] being considered as one of today’s
largest software systems. Not only their size but also
the huge data volume they are managing makes ERP

systems very complex. ERP software integrates many
organizational parts and functions into one logical
software system, posing its own challenges to testing
[9].

When it comes to the data used during testing,
questions as below need to be properly addressed:
“Where will the test data come from, especially the
initial test data pool? How will one produce new data
for transactions that require unique data? How one
ensures the consistency of master, transactional,
respectively test data?” All these questions relate to
what we call test data provision.

In this paper, we will focus on tests carried out
during the product development phases. Functional
testing at customer side, e.g. after the customers’ IT
department added or changed features to an SAP
product, addresses different additional concerns like
test data confidentiality and limited system access.
These features are equally relevant in practice but will
not be addressed here. The issues concerning test data
discussed in this paper are however relevant for
customer testing, too [9].

The key contributions of this paper are a
classification of problems related to test data for ERP
systems including an identification of test data
constraint types, an analysis of existing pragmatic
solutions and a listing of interesting research questions.
The paper is structured as follows. First, we present
some preliminary notions and related work in
Section 2. We continue in Section 3 describing the
different ERP test data and the relations between them.
Section 4 consists of a collection of identified
challenges and Section 5 presents our future research
plans.

2. Preliminaries and related work

In this section we present concepts and
methodologies from the literature to which we will
refer in the next sections.

A test case describes the operational steps through
which a certain functionality of property of the
System-Under-Test (SUT) is validated. Following
[10], a test case consists usually of the concatenation of
four procedures:

(1) Preamble (or setup): Sets the test up,
getting the SUT into the correct state to run
the test;

(2) Body: Executes a certain scenario or
sequence of steps described by the test case
in the SUT;

(3) Observation (or verification): Checks and
evaluates the test results and

(4) Postamble (or teardown): Takes the SUT
back in some standard state, where the next
test can run.

Regression testing is used to ensure the quality of

software systems produced in several development
cycles, by checking that additional code and changes
do not affect the functionality already implemented and
that the requirements are always satisfied. It consists of
a set of test cases that are executed regularly at every
stable stage of the development cycle. These test suites
should be reproducible and this requires a constant
initial system state at the beginning of a test run
together with appropriate test data. Such requirement
can be easily satisfied by stateless systems or systems
with a constant state at the end of each session, e.g.
protocol machines. In this case, test cases can be
annotated with static and concrete test data. Some
systems can be forcibly brought into a defined initial
test state using a preamble procedure. For other
systems however the requirement of starting a test in a
constant initial state cannot be met. For example it is
practically impossible to reset ERP systems because
the effort is simply too high even in a developing stage
and for a running ERP system this might even not be
allowed, e.g. due to legal obligations. This brings into
question the testability [21] of such systems, i.e. to
which degree such systems allow to define and execute
an effective testing process. If we take for instance the
controllability and observability features, they need a
careful analysis on how input test data produces,
respectively affects the output data of a system.
Moreover, issues regarding test data collection,
dependability, and reliability need also to be evaluated
for ERP systems.

As software systems are becoming more and more
complex, new levels of abstractions are introduced
both in software development and testing. Model-based
testing (MBT) [19] is a kind of black-box testing [3]
that uses structural and behavioral models, described
for instance by UML diagrams, to automatically
generate abstract test cases, thus automating the test

case design process. MBT is gaining its momentum
together with the model driven software development
(MDSD) methodology. MBT test case generators aim
to cover by test cases model features, e.g. all states in
an UML state machine, or data features, e.g. all
boundary values. As most system models are not
complete in terms of data modeling, (due to complex
data constraints), the test generators produce abstract
test cases which have to be further refined by adding
concrete data. Therefore, it is important to have a good
modeling framework for test data, such that the
appropriate test data are eventually generated along
with the generated test cases.

Test data constraints have to be considered during
test design when annotating test cases with data. The
reason is that system state changes do not usually
depend only on the performed actions, but also on the
input data and the actual internal state, including
internal data and state variables. The current test data
constraints focus on transactional data relations during
the run of one test case only. Because it was relatively
easy to annotate test cases with concrete data using the
mentioned restriction, test data modeling was not
highly prioritized and so a consolidated approach to
link data models and behavior models is still missing
[17]. To the best of our knowledge, a classification of
different test data constraints especially for ERP
systems is missing.

Data modeling is usually applied in the field of
database layout planning and management. Relational
modeling, e.g. using the Entity-Relationship Model, is
the most common way to describe database schemas
and languages like SQL have been invented to retrieve
the data from such relational databases. The object-
relational database model recently came to
prominence, reflecting the paradigm shift in
programming and providing an object oriented data
structure in databases. Related modeling techniques
use object-oriented models, enhanced by constraints.
The most popular approach utilizes the OMG’s UML
standard and OCL constraints. A discussion on the
adoption of the UML/OCL approach and its possible
challenges can be found in [1]. For ERP system tests,
data modeling has to be adapted as the data layout
inside the system is distributed and must address
specific challenges as the ones presented in this paper.

Ontologies in computer science represent a set of
concepts within a domain and the relationships
between those concepts. Instances of the concepts as
well as domain rules are also part of an ontology.
Unlike data models, ontologies are supposed to be
independent of a particular application of the described
domain [18]. Given their genericity, ontologies can be
applied to a limited degree in the highly customized
ERP systems.

Test data generation has been discussed in the
context of automated testing from the very beginning.
For white-box testing, approaches like symbolic
execution, actual execution, and random testing [7] are
used. They are based on code analysis or code
execution tracing to find value sets needed to execute
predefined paths through a system under test. For
black-box testing and in particular MBT, test data can
be generated from several types of specifications like
finite state machines, pre/post models, or UML
transition-based models [19,13,5]. Most of the research
addresses the test data generation for each test case
independently and less the global consistency of
different test data.

The problem of test data modeling has been tackled
in different ways, by approaches like boundary
analysis [11], domain analysis [3] or the classification
tree method [6], but these are not very well integrated
with the behavior models [17]. Test data modeling
using the UML/OCL data modeling approach is a
promising alternative [1,5,2]. We believe however that
the problems of incomplete data constraint definitions
and constraint solving of very complex systems such as
ERP systems need further investigations. Our paper
takes the first steps into this direction by identifying
the main challenges and types of constraints
symptomatic for ERP systems.

3. An introduction to ERP data

In the ERP world, data can be interpreted from two
perspectives: from a business, respectively from a
technical perspective.

 Business view on ERP data. From a business
point of view, data is divided into master data and
transactional data:
 Master data represents static data that remains valid

over a period of time and is used in several use case
scenarios. For example supplier information (such
as name and address) or product information (such
as size and description) is stored once, seldom
changed and can be inserted automatically during
several transactions.

 Transactional data in contrast is short-lived, used
only for a specific transaction and can always be
related to master data. For example ordering of a
product will be processed in a sales order
transaction. Information like the quantity of
products or the delivery deadline is individual for
the order and hence transactional data.

Technical view on ERP data. From a technical

perspective the distinction between master data and
transactional data is less relevant. All transactions in a

system have to be stored in databases and therefore
master data tables have primarily the purpose of
eliminating redundancies. In the above example of a
sales order only the transactional data is saved
explicitly while master data is referenced. More
important from a technical perspective is the
distinction between user generated and automatically
derived data for a transaction. Note also that
transactional data is not only generated by user input
but also might be derived automatically (e.g. the
current date) or from a prior transaction. For example
the quantity of a product in a sales order might be
determined by the current need for production or a
request from a customer. Therefore, a technical
distinction between system data and input data will be
used (see also Figure 1):
 System data serves as the applications internal data

set. It is stored in a database that is directly
accessible from the application. Access from the
outside is usually very limited. System data consists
of both master and transactional data.

 Input data is all information that has to be provided
from outside by users or external components
during execution and cannot be derived
automatically. The input data may be master or
transactional data.

Figure 1. An overview of ERP data: system
and input data

The motivation for such a classification is that data

which is stored in the system can be considered as
consistent and conform to predefined technical and
business constraints (as explained above this also
includes saved transactional data). The assumption
only holds if the system correctly implements all
consistency checks and constraint determinations.
Consequently, the runtime system only has to check
those consistency rules and constraints during a
transaction, which are connected to the user generated
data input. This is important because the number of
transaction critical constraints that have to be checked

before saving any data must be reduced to a
manageable subset in order to be enforceable in a
reasonable, i.e. user convenient, timeframe.

Consistency of ERP data. Data consistency (e.g.
concerning technical, business, and standardization
constraints) can be enforced at different levels in the
system. Common database systems provide means to
define simple to very complex and even dynamic
constraints on data. The constraints are defined using
field properties or guards which are checked every
time the associated data is changed. Conformance to
the ACID concept (Atomicity, Consistency, Isolation,
Durability) further allows rollbacks of whole
transactions, even if constraints are violated at the last
processing step. However constraint validation on data
in ERP systems is usually implemented outside the
database system as early as during input data
processing (close to the UI layer). Its main objective is
to resolve constraints (or rollback transactions) quickly
and without blocking additional resources. While
consistency checks on the application level is scalable
and fast, a constraint violation found on the database
level itself results in a rollback that has to be
communicated back to the user interface through all
application layers in between and hence can be seen as
a performance bottleneck for ERP systems. Shifting
constraint handling to the application also allows ERP
system designs that are independent of the database
implementation. This is due to the fact that database
vendors each have their individual language to define
data constraints. Correct implementation of data
constraint handling and checking therefore is one of
the major objectives of ERP application testing.

4. Challenges posed by ERP test data

This section gives an overview of test data
characteristics for ERP regression testing. Issues
regarding system test data and input test data are
separately investigated.

As sketched in Figure 2, the black box testing of an
ERP system needs a test execution environment
(sometimes called a test context) that groups a suite of
test cases. In the case of MBT, this will contain
information on the structure and behavior of the
system. The execution environment must of course be
stable and deterministic in order the achieve
repeatability of the test process. Each test case has
specific test data associated with each of the test steps.
The quality of test data must ensure a good coverage
and error detection capabilities. Since such properties
are already well studied in the literature [3,8], in this
section we will focus on the existing constraints
between various data manipulated during testing.

Addressing such test data constraints boils down to the
four identified properties from Figure 2, namely system
test data supply, system test data stability, input test
data constraints and test data correlation. These will
be introduced and discussed in the following two
subsections, which are partitioning these properties
into system test data or input test data related.

Figure 2. Properties for ERP test data
considered in this paper.

4.1 System test data

System data is a necessary ingredient for testing
since internal data is the base of any ERP system and
will most likely be processed during any execution.
Two special subjects regarding system data for
regression testing have to be considered:

(a) system test data supply and
(b) system test data stability.

The details are given below.
(a) System test data supply. In ERP systems,

providing master data as system data for later
interactions is an important user scenario. For testing,
providing an initial system data could be either part of
each test relying on system data or could be done
during a general testing preparation.

In the first case, all tests should be able to run on
empty systems, initializing and storing needed system
data in the preamble phase. Such approach is
unfortunately infeasible for ERP testing. A simple
employment process in a Human Resources (HR)
module shows the practical weakness. To hire
someone, an open position has to be entered to the
system. The position demands other information like
the unit to which it is assigned. The unit needs
information about its manager and the company it
belongs to, among others. Further iterations lead to the
creation of a vast amount of master data even for a
simple test run. Other processes (e.g. creating a report

for all employment processes) additionally need saved
transactional data inside the system. There are usually
numerous internal data dependencies such that most
test cases would be forced to set up an unmanageable
amount of master data in the preamble phase in order
to be executable.

Consequently ERP testing demands the insertion of
common test data to the system during the testing
preparation, which then would be used during the test
execution. A first solution is to write the data directly
into the database, but this is difficult, as it demands to
either manually or automatically enforce system data
consistency during this process. For the manual task
the complexity of data relations is too high, whereas
for the automated task, consistent data insertion would
mean to re-implement the expensive system data
constraint checking and solving mechanisms.

A second more realistic solution is to fill the empty
system with common test data by using the application
and hence the implemented mechanisms enforcing
system data consistency. The procedure itself therefore
can be seen as a set of fundamental test cases (that can
consequently be modeled and generated using MBT).
Even though this approach seems to be much more
feasible, problems still arise. First, using an untested
system to generate a master data stack is error prone
and hence the quality of master data will be poor.
Furthermore in early production stages mechanisms
needed for data insertion might not be fully
implemented. Despite the mentioned problems,
providing common test data as described by the latter
solution is the most practicable solution so far and
widely used at SAP.

(b) System test data stability means keeping the core
system data unchanged. It is strongly connected to the
requirement of regression testing: ‘always execute a
test case on the same system state’. If there is a
common set of system test data which, as argued
above, should be provided initially, it should not be
changed by any test in order to grant repeatability. This
is a very expensive requirement for regression testing
in ERP systems, because changing of system data is
part of the common ERP functionality. System data
will be consumed by some tests, e.g. when a process to
dismiss an employee is tested: each time an employee
is dismissed the system data will be changed and hence
the entity cannot be used for employee related
transactions like promotion any more. Other tests
might alter common master data unintentionally due to
implementation faults in either the SUT or the test case
itself.

Obviously altered common test data proves to be
problematic for other test cases depending on them.
Finding out whether a failed test was caused by a
faulty implementation or altered master data is hard to

decide and a failed test even might occur randomly e.g.
depending on the execution order of test cases. Apart
from the described technical difficulties, test cases
implying a fault because of altered system data also
negatively affect the tester’s motivation.

System data access rules, preventing the alteration
of common test data may be a solution but enforcing
write protections during test execution will cause a
difference in behavior of the SUT compared to the
delivered system. Hence positive test results are not
guaranteeing the absence of errors in the delivered
system any more.

Another solution is to bind the concrete system data
to abstract test cases during runtime. In this case, rules
defined e.g. in OCL could be generated together with
the test cases, allowing the test execution system to
search for compliant system data and to assign it just
before or even during test execution. To determine the
current system data state and binding suitable data to
the abstract test cases is however too complex in
practice. Furthermore, observing the whole system
state is (if ever) not possible until very late stages, thus
preventing such a testing strategy during most of
development period.

Another strategy to supply test data stability is the
cloning of master data tables in an initial system state
(prior to test execution) to ease and speed up regular
data resets, e.g. once a week. Shorter periods are
usually impracticable because of the copying costs
time in which development and testing has to pause
and demands additional manual work. However
directly copying master data will always result in the
loss of stored transactional data, as former references
and relations will be destroyed. Also structural changes
of the master data (e.g. adding a field for the gender at
the personal data) which are carried out frequently
during development phases can result in the
invalidation of the master data clone. Automatic reset
and re-provision of system data as described in the
previous section then is the only way to solve the
problem. Nevertheless such a system test data reset
takes about half a week for some SAP ERP
applications, even though it is nearly fully automated.
Therefore the usage is very limited and so the general
test data stability remains a difficult problem.

4.2 Input test data

Until now only the test data inside the system has
been discussed but in order to test ERP applications
also data from the outside has to be provided for the
test runs. Mostly this input data will be transactional
but in order to test master data modification both
transactional and master data might have to be added to

test cases. Similar to system data, the general feature
that makes it hard to deal with input data is the
complexity of its associated constraints.

In the context of ERP system testing the input test
data relations can be classified in two groups:

(a) input test data constraints describing the
correlations inside a test case that are
unrelated to the system data. These
constraints can be further refined as
follows:
(a.1) syntactic input data constraints
(a.2) intra test case constraints, and
(a.3) contextual input data constraints

(b) test data correlation describing the relation
between system and input data.

Figure 3 is used to illustrate the mentioned

constraints. They are explained in detail below.
(a.1) Syntactic input data constraints. Every ERP

system has syntactical constraints on input data,
concerning for instance data types and ranges. In the
test case from Figure 3 positive system response
depends on the usage of the correct integer range for
the Product Id. In contrast a value outside the range
should result in a system error message.

Figure 3. Illustration of different types of input
test data constraint

(a.2) Intra test case constraints. Not only in MBT

but in every black box testing approach test cases
describe an interaction sequence with the SUT using
only interfaces, which are accessible from the outside.
The correct reaction of the system might not only
depend on syntactically correct input values but also on
the semantical relation between the data used for
different steps of the test sequence. In the example
from Figure 3 the system should either react with a
success notification or an error message depending on
the fact whether supplier #003 is able to provide
product #47.

(a.3) Contextual input data constraints. Also the
application context might enforce constraints on the
test data. In Figure 3 the validity of the used delivery
data depends on the current time in the SUT. Other
contextual constraints are for example input data
restrictions depending on user roles or business
configurations.

(b) Input data vs. system data correlation. More
complicated constraints are those relating input data to
system data. Depending on the system data
observability, it might even be impossible to determine
in advance whether a certain input value should trigger
a positive or negative system response, and hence the
satisfaction of constraints might become
nondeterministic. In the test case of Figure 3 for each
Id (Seller Id, Buyer Id, Product Id) a valid master data
entry has to be present inside the system data to be able
to successfully process the sales order. However if it is
not possible to observe system data during test
execution an unambiguous test oracle for the SUT
response is impossible to provide. Also the absence of
specific system data belongs to this category as master
data inside the system often has the restriction to be
unique. Hence input of already existing master data
might result in different system behavior than the input
of unique data. This issue especially becomes
prominent in regression tests where the provision of
unique input test data might be problematic.

5. Conclusions and future research

In this paper special characteristics of test data in
ERP systems have been described. Apart from the
complexity of test data constraints for very large
systems, also test data supply and stability have been
identified as major issues. We will continue to
investigate methods responding to each of the
identified problems and strategies. Most likely
categorization of test cases (e.g. system data consumer
/ system data dependent / system data independent) and
then an orchestration of individual strategies will be
part of such a solution.

Our research plans will include the modeling of test
data for large ERP systems in the context of MBT and
its annotation with constraints, most probably in a
UML/OCL context. Here especially the automatic
generation of preambles and postambles as well as the
application of MBT for negative testing are interesting
research topics. Another emphasized difficult aspect is
how to provide data for regression testing when the
system under test cannot be easily reset. Moreover,
MBT may come in two different flavors: online and
offline testing [20]. For online MBT, the generation of
test cases is dynamic, i.e. the set of test cases already

generated and their result on the SUT impacts on the
choice of the next generated test case. In this area we
also see a challenge to perfect a dynamic test data
generation approach able to cope with unpredictable
states and test data sets.

The next-generation product of SAP for mid-
market, SAP Business ByDesign1, will employ data
types on a generic level (core components) and data
types for specific vertical industry [16]. The Business
ByDesign business objects, defined in the Enterprise
Service Repository (ESR), are trees of business object
nodes. A business object node is structurally defined
by a Global Data Type (GDT). In other words, a
business object is a structured set of GDTs. As a result
the data structures and layouts used inside ByDesign
are very diverse and comprise complex associations
and interdependencies. We plan to validate our future
research prototypes addressing test data constraints
internally on a ByDesign system and to compare it
with the existing internal test tools

Acknowledgements
This work was partially supported by the EU-funded
project Modelplex [12].

6. References

[1] T. Baar: Experiences with the UML/OCL-approach in
practice and strategies to overcome deficiencies, In Proc. of
Net.ObjectDays2000, Net.ObjectDays-Forum, 2000; pp. 192-
201.

[2] H. Balsters: Modelling database views with derived
classes in the UML/OCL-framework. In Proc. of UML’03,
LNCS 2863. Springer, 2003, pp. 295-309.

[3] B. Beizer: Black-Box Testing: Techniques for functional
testing of software and systems. John Wiley & Sons, Ltd.,
1995.

[4] M. Benattou, J.-M. Bruel, and N. Hameurlain: Generating
test data from OCL specifications. In Proc. of the
ECOOP'2002 Workshop on Integration and Transformation
of UML models (WITUML'2002), 2002.

[5] L.C. Briand, J. Cui, and Y. Labiche: Towards automated
support for deriving test data from UML statecharts. In Proc.
of UML’03, LNCS 2863, Springer, 2003, pp. 249-264.

[6] Z. R. Dai, P. H. Deussen, M. Busch, L. P. Lacmene, and
T. Ngwangwen: Automatic test data generation for TTCN-3
using CTE. In Proc. of ICSSEA’05. CMSL, 2005.

1 http://www.sap.com/solutions/sme/businessbydesign

[7] J. Edvardsson: A survey on automatic test data
generation. In Proc. of 2nd Conf. on Computer Science and
Engineering, ECSEL, October 1999, pp. 21–28.

[8] M. Fewster, and D. Graham: Software test automation.
ACM Press, 1999.

[9] M. Helfen, M. Lauer, and H. M. Trautwein: Testing SAP
solutions. SAP Press, 2007.

[10] ISO/IEC 9646-1. Information technology – open
systems interconnection – conformance testing methodology
and framework, Part 1: General concepts. International
Standards Organization, 1994.

[11] N. Kosmatov, B. Legeard, F. Peureux, and M. Utting:
Boundary coverage criteria for test generation from formal
models. In Proc. of ISSRE’04, IEEE Computer Society,
2004, pp. 139-150.

[12] Modelplex: MODELling solution for comPLEX
software systems. 6th Framework Programme EU Project.
Reference: IST 34081 (IP). http://www.modelplex.org.

[13] J. Offutt; S. Liu, A. Abdurazik, and P. Ammann:
Generating test data from state-based specifications. In
Software Testing, Verification and Reliability 12(1). John
Wiley & Sons, Ltd., 2003, pp. 25-53.

[14] D. E. O'Leary: Enterprise Resource Planning systems.
Systems, life cycle, electronic commerce and risk.
Cambridge University Press, 2000.

[15] G. Pike: Supporting business innovation while reducing
technology risk. SAP Insight, June 2006. Online at:
http://www.sap.com/services/programs/pdf/BWP_Supporting
_Business_Innovation.pdf

[16] H. Plattner: Trends and Concepts in the Software
Industry (part I). Lecture notes from Hasso Plattner Institute.
Summer Term 2007. Webpage (visited January 18, 2008):
http://epic.hpi.uni-potsdam.de/Home/TrendsAndConceptsI2
007.

[17] I. Schieferdecker: Modellbasiertes testen. In
OBJEKTspektrum, vol. 3, 2007.

[18] P. Spyns, R. Meersman, and M. Jarrar: Data Modelling
versus Ontology Engineering. SIGMOD Record 31(4), 2002,
pp. 12-17.

[19] M. Utting, and B. Legeard: Practical model-based
testing, a tools approach. Morgan Kaufmann Publishers,
2007.

[20] M. Utting, A. Pretschner, and B. Legeard: A taxonomy
of model-based testing. Technical Report 04/2006,
Department of Computer Science, The University of Waikato
(New Zeeland), 2006.

[21] J. M. Voas, and K. W. Miller: Software Testability: The
New Verification. In IEEE Software 12(3), 1995, pp. 17-28.

[22] M. Al-Mashari, Abdullah Al-Mudimigh, and M. Zair.
Enterprise resource planning: A taxonomy of critical factors.
In European Journal of Operational Research 146 (2), 2003,
pp. 352-364.

