
An AsmL Semantics for Dynamic Structures and

Run Time Schedulability in UML-RT

Stefan Leue1, Alin Ştefănescu2⋆, and Wei Wei1

1 Department of Computer and Information Science
University of Konstanz

D-78457 Konstanz, Germany
{Stefan.Leue|Wei.Wei}@uni-konstanz.de

2 SAP Research CEC Darmstadt
Bleichstr. 8, D-64283 Darmstadt, Germany

alin.stefanescu@sap.com

Abstract. Many real-time systems use runtime structural reconfigura-
tion mechanisms based on dynamic creation and destruction of compo-
nents. To support such features, UML-RT provides a set of modeling
concepts including optional actor references and multiple containment.
However, these concepts are not covered in any of the current formal
semantics of UML-RT, thus impeding the testing and formal analysis
of realistic models. We use AsmL to present an executable semantics
covering dynamic structures and other important features like run time
schedulability. The semantics is parametrized to capture UML-RT se-
mantics variation points whose decision choices depend on the special
implementation in a vendor CASE tool. We have built several various
implementations of those variation points, including the one as imple-
mented in the IBM Rational Rose RealTime (Rose-RT) tool. Finally,
we illustrate how the proposed executable semantics can be used in the
analysis of a Rose-RT model using the Spec Explorer tool.

Key words: UML-RT, dynamic structures, formal semantics, AsmL,
Rose-RT, Spec Explorer, model-based testing, model checking

1 Introduction

UML-RT [28] was proposed as a UML dialect customized for the design of dis-
tributed embedded real-time systems [26]. UML-RT is based on the ROOM no-
tation [27] which was originally developed at Bell Northern Research. Currently
supported by the IBM Rational Rose RealTime (Rose-RT) tool [23], UML-RT
finds applications in a broad range of domains including telecommunications
[17], control systems [25, 12], and automotive systems [11]. A UML-RT model
consists of a set of concurrent autonomous objects, called actors, that exchange
messages with one another through dedicated communication interfaces referred
to as ports. A notable feature of UML-RT is the hierarchical and dynamic struc-
ture of an actor: An actor may contain a set of sub-actors in its inner structure,

⋆ The work was done while this author was affiliated with the University of Konstanz.



2 Stefan Leue et al.

and a sub-actor can be dynamically constructed and destroyed at run time. More-
over, a sub-actor contained in one actor can be imported to the inner structure
of another actor. This allows two actors to share a sub-actor serving as a mes-
senger for its two containers. The dynamic structure feature of UML-RT is very
useful since it reflects the architecture of many realistic distributed systems.

Software models play a central role throughout the whole life cycle of devel-
opment processes following the model driven architecture paradigm [21]. Models
are used for documentation, prototyping, code generation and testing. It is there-
fore of great importance that a software model is correctly designed. A promising
way of increasing one’s confidence in the correctness of a software model is the
use of formal methods, in particular systematic state space exploration. This
requires a formal operational semantics of the modeling language.

In this paper we report on the SURTA (Semantics of UML-RT in AsmL)
project that proposes an executable semantics for UML-RT. The semantics is
given in AsmL, a modeling language based on the theory of Abstract State
Machines [2]. Developed by the Foundations of Software Engineering group at
Microsoft Research, the AsmL language is supported by the Spec Explorer tool
[29]. SpecExplorer enables the simulation, assertion checking, and test case gen-
eration of an AsmL model by exploring the generated finite state machine. AsmL
is also tightly integrated into the Microsoft .NET framework. We use the .NET
type system for describing meta-model level details of UML-RT. A further ben-
efit of choosing AsmL is to exploit the verification and test case generation
capabilities of Spec Explorer for Rose-RT models, for which the Rose-RT tool
offers no support.

Compared to other existing semantics work for UML-RT, the main contri-
butions of the SURTA project are as follows:

– We cover some important UML-RT features such as dynamic structures and
run time schedulability. These include (1) actor incarnation/destruction, (2)
actor importation/deportation, (3) dynamic port binding, (4) replications, (5)
controllers, and (6) other run time environment features.

– We implemented several variants of the UML-RT semantics. To accommodate
the many ambiguities and semantic variation points in the semantics as de-
scribed in [27] we define a most general semantics that can encompass all inter-
pretations that are possible according to [27]. For the non-ambiguous portion
of UML-RT we give a parameterized semantics which can extend the general
semantics. We also define a semantics that is in line with the Communicat-
ing Finite State Machines (CFSMs) [6] paradigm, and one that corresponds
to the concrete semantics of UML-RT as implemented in the Rose-RT tool.
Providing a semantics as implemented by a particular vendor tool will prove
beneficial if this semantics entails a smaller state space than that allowed by
the more general semantics. This allows those portions of the behavior to be
disregarded that do not correspond to a behavior implemented by that par-
ticular tool and hence by the deployed target system synthesized from the
model. This would then result in a more efficient state space exploration.



An AsmL Semantics for UML-RT 3

– The architecture of SURTA has great extensibility for implementing and plug-
ging in different concrete semantics. Additionally, SURTA allows a UML-RT
model to be straightforwardly expressed in AsmL. The transformation of a
model is no more complex than describing what syntactic elements are in-
cluded in the model, and this can be fully automated.

– SURTA allows an easy encoding of system properties, which can be checked
using the assertion checking feature of Spec Explorer.

Related work. [13] uses a notion of flow graphs into which a UML-RT model is
transformed. However, there is no systematic transformation method available. It
is also not obvious how such a transformation can improve the functional analysis
of UML-RT models. An early approach to model checking RoseRT models is de-
scribed in [24]. It aims at model checking the C++ code synthesized by RoseRT.
This approach is rather inflexible, since it depends on the programming language
chosen in the RoseRT models and on the particular code generator used. It also
only supports a rather limited set of the syntactic features of RoseRT models. [30]
uses labeled transition systems to formalize a subset of UML-RT mostly focus-
ing on the behavior of state machines. [19] covers the timed aspects of UML-RT
by translating a timed state machine into a timed automaton. However, it does
not consider any other aspects of UML-RT. There are several approaches of for-
malizing UML-RT using process algebras [10, 9, 22, 8, 3]. Most of these works
consider only synchronous communication. [9] considers asynchronous commu-
nication, but it allows only the use of bounded FIFO message buffers. While
none of the above cited papers considers dynamic structures of UML-RT, [3]
proposes a semantics for the so-called unwired ports using name passing in the
π-calculus. The support of unwired ports enables changes in the communication
topologies. However, the work described in [3] does not consider other kinds
of dynamic structures that our work is addressing. Unlike our work, none of
the existing work addresses the ambiguities and semantic variation points in
the informal semantics of UML-RT, and most of them derive the operational se-
mantics from the particular implementation in Rose-RT. [18] maps the modeling
elements of UML to AsmL data structures, based on which a UML model can be
transformed into an AsmL specification at the semantic level. This is different
from our approach in which a UML-RT model is translated into AsmL purely
syntactically. [5] compares the expressiveness of several formalisms for specify-
ing dynamic system structures. SURTA supports almost all important dynamic
structure operations that other formalisms provide, such as addition and removal
of elements and connectors, iterative changes, and choice-based changes.

Outline. The paper is structured as follows. We give a brief introduction to UML-
RT and AsmL in Sections 2 and 3, respectively. The architecture of SURTA is
explained in Section 4. The executable semantics is then detailed in Section 5.
We illustrate the usefulness of the given semantics in Section 6. We conclude the
paper and suggest future work in Section 7.



4 Stefan Leue et al.

2 UML-RT

Using an example model in Figure 1, we briefly introduce the set of UML-RT
concepts for which we later define a semantics in Section 5. The model in Figure
1 has a number of clients that each requests a remote service. The request of
a client prompts the client manager to send an unused service accessor object
to the server. The server connection manager then imports the received ob-
ject to both the coordination process (serviceAccessorCoor) and an available
serviceAccessorS process. The coordination process informs the client side of
a successfully established connection. The serviceAccessorS process then uses
the imported accessor object to pass messages between the client and the service
object assigned to the client.

Fig. 1. A UML-RT model in which a number of clients request remote services. The
model is taken from a collection of examples included in Rose-RT distributions, with
slight modification to allow dynamic creation and destruction of service instances.

Static structure. The central structural concept in UML-RT is that of an actor,
also called capsule in Rose-RT. An actor is an autonomously running object
whose execution is influenced by other actors exclusively through message pass-
ing. Each actor is an instance of a certain actor class. An actor may hold a set
of actor references (capsule role in Rose-RT), which are pointers to sub-actors.
Figure 1 shows the internal structures of two actor classes: ClientManager and
ServiceConnectionManager. Both actor classes contain sub-actor references like
client and serviceAccessorS. A reference is incarnated when a new actor is
created for the reference. An actor reference is fixed if its incarnation occurs when
the enclosing actor is created. A reference is optional if its incarnation must be
explicitly invoked by the enclosing actor. The sub-actor that an optional ac-
tor reference points to may be destroyed later by the container. An imported

reference cannot be instantiated, and can only hold a pointer to an existing



An AsmL Semantics for UML-RT 5

actor. In Figure 1, the reference client is fixed and the reference service, con-
tained in serviceConnectionManager, is optional. Taking the graphic notations
of Rose-RT, we denote an optional reference by a shadowed rectangle. Exam-
ples of imported references are serviceAccessorS and serviceAccessorCoor,
represented by gray filled boxes.

The communication interface of an actor is a set of ports though which the
actor sends and receives messages. Each port is associated with a protocol that
determines which messages can be sent and received through the port. In Figure
1, ports are those small rectangles sitting either on actor reference boundaries
or inside actor bodies. A port may be an end port through which its containing
actor sends or receives messages. A port may also be a relay port that simply
forwards messages from one side to another. A port may have a conjugated

protocol, namely, the set of incoming messages and the set of outgoing messages
defined in the original protocol are inverse. Ports with conjugated protocols are
denoted by hollow rectangles. Ports in Figure 1 are connected with each other.
Each connecting line defines a potential binding of the two connected ports.
When two ports are actually bound at run time, a message can arrive at one
port from the other. Two bound ports must have compatible protocols, namely
that the set of outgoing messages allowed by one protocol must be contained in
the set of incoming messages of the other protocol.

Actor references and ports can be replicated. A replicated entity represents
a number of instances. Resembling an array data structure, each individual in-
stance of the entity is accessed through a unique index. Replicated entities are
graphically represented in a multilayered fashion, c. f. the actor reference client
in Figure 1. A replicated entity may have a replication factor to specify the max-
imal number of instances that it may contain at run time. The replication factor
of each replicated reference in our example is depicted as the upper-right corner
number in its graphic notation. All ports in the example have also replication
factors that are however not shown in the figure. Replication is used to obtain a
more flexible and concise graphic representation of a model. However, replication
also introduces ambiguities, e.g., when two replicated ports are connected, it is
not clear which instance of one port should be bound to which instance of the
other port at run time. We will discuss this problem in depth in Section 5.6.

Dynamic behavior. The behavior of an actor is expressed by an extended hi-

erarchical state machine. In UML-RT, a transition is always triggered by the
receiving of a message from one of the end ports of the corresponding actor. A
transition may have a specified action to be executed when it is fired. Actions
may alter local variables, send messages to other actors, or dynamically change
the structure of the actor. States may also have entry actions and exit actions.
The language used for specifying actions is not limited in UML-RT. For more
information about state machines and their behavior, we refer readers to [20].
In this paper we consider only flat state machines, and leave the formalization
of hierarchical state machines for future work. Currently, we must flatten the
hierarchical state machines of a model before translating it into AsmL.



6 Stefan Leue et al.

Controllers. At run time, each actor instance runs on a thread. Threads are
executed independently in parallel. We abstract physical threads to the concept
of controllers. A controller contains a set of actor instances, and schedules the
executions of contained actors as well as the sending and receiving of messages.

Rose-RT. Widely used in industrial practices and academic research, Rose-
RT is a powerful CASE tool for modeling distributed embedded systems using
UML-RT formalism [23, 14]. Rose-RT currently supports three programming
languages, C, C++, and Java, for specifying transition actions in state machines.

Fig. 2. A UML-RT model.

Rose-RT is often taken as the main source of retrieving an operational
semantics for UML-RT. This is problematic in two ways: First, the concrete
Rose-RT semantics does not allow for non-determinism at all, and resolves non-
determinism in a naive way: Consider the example in Figure 2. The replicated
port p is connected to three ports that each belongs to a distinct reference below.
Rose-RT decides that the instance of p indexed at 0 will be bound to the port
of the first reference being added to the structure diagram when the model was
built, say c1. This order fixing can be dangerous because a previously validated
property may no longer holds for the system after, e.g., the reference c1 was
deleted from the model and later added back. In this case, the instance indexed
at 0 will no longer be bound to the port at c1, which may result in a violation
of the property. Second, the Rose-RT semantics even has some inconsistencies
with the informal UML-RT semantics suggested in [27].

3 AsmL

Space limitations do not permit us to provide a detailed description of the Ab-
stract State Machine Language (AsmL in short), we refer the reader to [15] for
more information. AsmL is an object-oriented software specification language.
Its syntax resembles Java and C#, and it provides conventional object oriented
programming features like encapsulation and inheritance. As a high-level spec-
ification language, AsmL also provides supports for non-determinism, parallel
updates of variables, and assertion checking, as illustrated by the example in
Figure 3. The program defines a class of integer intervals, which has two fields
to specify the lower bound and the upper bound of an interval. The shift pro-
cedure shifts an interval by a specified offset. The random function returns an
arbitrary integer number within the interval.



An AsmL Semantics for UML-RT 7

class Interval
private var lower as Integer

private var upper as Integer
public procedure shift(offset as Integer)

step

lower := lower + offset
upper := upper + offset

public function random() as Integer
return any number | number in {lower..upper}

constraint wellformed:
lower <= upper

Main()
step

let interval = new Interval(0, 5)
step

interval.shift(6)
WriteLine(interval.random() > 5)

step

WriteLine(interval.random() > 5)

Fig. 3. An AsmL program working on integer intervals.

Non-determinism. The returned value of the random function is picked non-
deterministically from the interval by the run time environment of Spec Explorer,
the specification analysis tool supporting AsmL. There are other program con-
structs in AsmL that allow non-deterministic choices, such as choose i in S

which takes a random member from a set S.

Parallel updates of variables. The AsmL language has an important concept
called step. Any update of a variable within one step does not take effect until
the next step is executed. As an example, the second step in the Main procedure
shifts an interval by 6, and checks if any value in the interval is now larger than
5. The checking occurs before the next step is executed, so the interval is still
between 0 and 5 and the output of the checking is false.

Assertion checking. AsmL allows the use of class invariants, identified by the
keyword constraint, as well as pre- and post-conditions for procedures and
functions, denoted by the keywords require and ensure, respectively. The vi-
olation of any of these assertions will result in a runtime exception. Assertion
checking does not only help revealing program errors, but also enables property
verification by searching for assertion violations, as explained in Section 6.

Semantics of AsmL. The AsmL language is based on the Abstract State Machine
formalism [4]. A formal semantics has been defined for the core of AsmL [15].
There are also other semantic definitions for AsmL [16]. Even if it does not
possess a formal semantics for all of its syntactic features, AsmL with its support
for non-determinism and its step semantics is nonetheless an ideal choice for
defining an executable operational semantics for UML-RT, which is the main
objective of our paper.

4 SURTA Architecture

The SURTA project defines an AsmL specification of the UML-RT semantics,
including various realizations of semantic variation points. Our objective is to
give a semantics for the UML-RT language. We do not consider how the seman-
tics of a concrete UML-RT model is mapped into AsmL structures, i.e., we are
not interested in devising a semantic level translation procedure for individual



8 Stefan Leue et al.

models. This distinguishes our work from all other semantic work for UML-RT,
e.g., [22, 1, 3]. The transformation of a UML-RT model can then be accomplished
entirely at the syntactic level: we simply describe what comprises the syntactic
definition of a model in the AsmL specification. The execution of the model is
then handled totally by the semantics of a chosen run time environment. This
approach has at least the following advantages:

– The separation of syntax and run time behavior makes it highly flexible for
implementing semantics variants: When a semantic variation point of UML-RT
is differently realized, the syntactic level needs no or very little modification.

– Because a concrete UML-RT model is only syntactically transformed into
AsmL, a change in the semantic level does not require the model to be re-
transformed. In fact, how the semantic level of UML-RT is mapped can be
completely transparent to users of the SURTA project.

– A straightforward syntactic translation of a UML-RT model into AsmL can
be fully automated.

layer core
concrete extension

(e.g., Rose−RT)

UML−RT models Rose−RT models

message priorties

Rose−RT port bindings

pseudo FIFO buffers

capsule incarnation

model
description

meta−model

level

run time

level

semantic

levels

behavior

syntactic actor classes, actor reference definitions

port definitions, binding definitions

variable definitions, message types

state machine definitions, protocols

actor instances, actor references

ports, port bindings, controllers

actor incarnation/destruction

actor importation/deportation

buffers, message sending and receiving

Fig. 4. The SURTA architecture.

Figure 4 shows the architecture of the SURTA project. It has three levels: the
syntactic meta-model level, the semantic run-time behavior level, and the model

description level. Each level has a core that gives semantics for the unambiguous
parts of the UML-RT language, which can be extended by different implemen-
tations for ambiguities and semantic variant points. The extensibility minimizes
the effort for implementing a variant of some UML-RT semantics.

Meta-model level. This level mainly defines the syntactic composition of each
UML-RT modeling concept. For instance, it defines what constitutes an actor
class definition. On the other hand, it does not describe what an instance of an
actor class is, and how instances of a class behave at run time. The concept of
actor instances and its run time behavior are instead defined at the run time
semantic level. The meta-model level links the other two levels, and provides
indispensable information for actor reference incarnation and importation as
will be explained in Section 5.6.



An AsmL Semantics for UML-RT 9

Run-time behavior level. This level defines run time entities that are instances
of the modeling elements introduced in the meta-model level. As an example,
actor instances are running entities when a UML-RT model is executed, and
each running actor instance belongs to some actor class. This level defines the
relationship between an actor instance and its defining class, the creation and
destruction of an actor instance, port bindings, and many other actor instance
related run time properties.

Model description level. This level defines concrete UML-RT models by creating
the proper syntactic description of a model based on the relevant UML-RT
modeling elements at the meta-model level. The model description level basically
needs no knowledge of the run time behavior level. Exceptions are transition
guards and actions in which some methods provided by a particular run time
environment may be invoked, such as the incarnation of an actor reference, or
the read/write of a variable (or, an attribute or a field) of an actor. However, in
these cases we only need to know the signatures of the invoked methods while
their implementations remain hidden.

Extensions. Each level in the SURTA architecture can be extended with different
concrete semantic variation point realizations. Currently, we provide three differ-
ent implementations: (1) a most general semantics in which each actor instance
runs on a distinct thread, and messages are stored in bag-like data structures.
This means that any message in a bag can be selected for triggering a transition;
(2) a semantics based on Communicating Finite State Machines (CFSMs) [6], in
which each actor instance runs on a distinct thread, and messages are stored in
first-in-first-out (FIFO) queues such that only the head message can be received
by a port; (3) a semantics based on the Rose-RT implementation the details of
which will be presented in Section 5.

5 An Executable Semantics

In this section we present the AsmL specification of the UML-RT semantics in
the SURTA project. Sections 5.1–5.3 explain how the syntactic definitions of
UML-RT modeling elements are mapped. Sections 5.4–5.8 explain in detail the
semantics of run time entities. Section 5.9 addresses model descriptions and gives
the AsmL specification of the example in Figure 1. Due to space limitations we
leave out a large part of implementation code of the definition of each UML-
RT concept, and present only the part relevant to our discussion. Readers are
referred to [20] for more details.

5.1 Actor Classes

The syntax of the central UML-RT concept of actor classes is defined to be
a collection of actor reference definitions, port definitions, binding definitions,
variable definitions, and a state machine description (see Section 5.2). This is



10 Stefan Leue et al.

reflected in the AsmL class ActorClass shown in Figure 5. Note that any object
of the class ActorClass is a particular class of actors, but not an instance of
an actor class. Actor instances are defined at the run time behavior level as
explained in Section 5.6.

class ActorClass
private name as String

private const subActorRefDefs as Set of SubActorRefDefinition
private const portDefs as Set of PortDefinition

private const bindingDefs as Set of BindingDefinition
private const variableDefs as Set of VariableDefinition
private const stateMachine as StateMachine

Fig. 5. The AsmL definition of actor classes.

We omit the classes for actor reference definitions, port definitions, etc. The
class of sub-actor reference definitions has (1) a field myClass to indicate the
class of an actor reference; (2) a field kind to specify whether a reference is fixed,
optional, or imported; and (3) a replication factor which is enforced to be a
positive number in our specification. A port definition has one of three types:
either an external end port, an internal end port, or a relay ports. An external end
port is visible to the outside of the containing actor, and cannot be bound to any
port inside the actor. An internal end port is visible only inside the actor, and
cannot be connected to the outside world. A port definition has also a replication
factor.

5.2 State Machines

As mentioned before, we formalize here only flat state machines. Hierarchical
state machines are left for future work. The class of state machines consists of
a set of states, transitions, and an initial state. A transition has a source state,
a target state, one or more triggers, and an optional action. A trigger consists
of a signal and a port. It may also contain a guard object so that the trigger is
available only if the guard evaluates to true. Note that a state machine is defined
only once for a class of actor instances. The class ActorInstance does not contain
state machine information except for a field to remember its current state. The
state machine definition in an actor class guides actor instances to move from
states to states.

Guards and actions. We define transition guards and actions as AsmL interfaces.
A guard has a mandatory evaluate method to be implemented individually for
each concrete transition guard. The evaluation of a guard depends on the cur-
rent state of the respective actor instance and the content of the message used to
trigger transitions. Unlike guards, the mandatory method execute of an action
also takes a run time environment as one parameter. This is because the run
time environment provides necessary information for the incarnation, destruc-
tion, importation, and deportation of actors, as well as for message sending and
receiving.



An AsmL Semantics for UML-RT 11

5.3 Protocol

A protocol is defined to be a set of incoming message types and a set of outgoing
message types. A protocol can be conjugated by reversing the two sets of message
types. A message type is a pair of a string signal and a data type. A message
contains a signal, a specified priority, and an optional data object. The signal
of a message must be identical to the signal of its message type, and the data
object in the message must have the type as specified in the message type.

Rose-RT message priorities. There are seven levels of message priorities defined
in Rose-RT: background, low, general, high, panic, system, synchronous, from
the lowest to the highest. Each priority corresponds to two message buffers in a
controller in the Rose-RT run time environment, which we will discuss in Section
5.7.

So far we have been concerned with the meta-model level mappings. Starting
with the next subsection we will discuss the run time behavior level that defines
a semantics for run time UML-RT entities.

5.4 Actor References

Figure 6 defines the class of actor references. Note that it merely contains a
reference to its definition and an instance mapping. As seen in the constructor
method of the class, when an actor reference object is created, all fixed sub-actor
references are incarnated.

class ActorReference

private const myDef as SubActorRefDefinition
private var instance as Map of Integer to ActorInstance
ActorReference(aDef as SubActorRefDefinition)

myDef = aDef
match aDef.getKind()

ActorReferenceKind.fixed:
instance = {i -> new ActorInstance(aDef.getClass())

| i in {0..aDef.getReplicationFactor() - 1}}

otherwise
instance = {->} as Map of Integer to ActorInstance

Fig. 6. The AsmL definition of actor references.

5.5 Ports

The class Port defines actual ports created at run time, as shown in Figure 7,
extended by two sub-classes representing two types of ports: end ports and relay
ports. A port object records the run time binding information of each of its
indexed members. The only difference of the EndPort and RelayPort classes is
that a relay port resides on the structural border of an actor and thus has two
sides. One side connects to the outside world of the actor, the other to the inside
world. Therefore, a relay port can be involved in more than one binding. We use
a Boolean component in the peer field to indicate the side of connectivity.



12 Stefan Leue et al.

class Port
private const myDef as PortDefinition

class EndPort extends Port
private var peer as Map of Integer to (Port, Integer) = {->}

class RelayPort extends Port

private var peer as Map of (Integer, Boolean) to (Port, Integer) = {->}

Fig. 7. The AsmL definition of run time ports.

5.6 Actor Instances

Figure 8 shows the fields of the class of actor instances: myClass indicates which
actor class an actor instance belongs to, the internal structure (sub-actor refer-
ences and ports), a valuation of the actor variables, and the current state of the
actor instance.

class ActorInstance
private const myClass as ActorClass

private const subActorRefs as Set of ActorReference
private const ports as Set of Port
private var valuation as Map of VariableDefinition to Obj = {->}

private var state as State
ActorInstance(aClass as ActorClass)

myClass = aClass
state = aClass.getStateMachine().getInitialState()
ports = {new EndPort(pDef) | pDef in aClass.getPortDefs() where pDef.isEndPort()} union

{new RelayPort(pDef) | pDef in aClass.getPortDefs() where pDef.isRelayPort()}
subActorRefs = {new ActorReference(rDef) | rDef in aClass.getSubActorRefDefs()}

step while exists binding in getAllPossibleBindings() where binding.bothPartiesFree()
choose binding in {b | b in getAllPossibleBindings() where b.bothPartiesFree()}

binding.bind()

Fig. 8. The AsmL definition of actor instances.

Constructor and port binding. Figure 8 also shows how an actor instance is
constructed from an actor class definition: A run time port is constructed for
each port definition of the class; a sub-actor reference is created for each reference
definition of the class. The most intricate part of actor instance construction is
how ports inside an actor should be bound, which is only vaguely described in
[27]. This is especially the relevant when binding replicated ports or ports of
replicated actor references. As a solution, we leave the port binding problem as
a semantic variation point. Figure 8 shows the most general binding strategy:
when a port p can be bound to either p1 or p2, we non-deterministically choose
one of p1 and p2 to be bound with p.

Rose-RT port binding. Rose-RT fixes the order of port bindings by giving prior-
ities to actor references and ports according to the following rules: (1) For any
two sub-actor references r1 and r2, if r1 was added to the model earlier than r2

was at model construction time, then the ports in the actor that r1 points to
are bound earlier. (2) For a replicated sub-actor reference, for any two indices



An AsmL Semantics for UML-RT 13

i1 < i2, the ports of the reference member at i1 are bound earlier than those
of the member at i2. (3) For any two ports p1 and p2 in a same actor, if p1

was added to the model earlier than p2, then p1 will be bound earlier. (4) For a
replicated port, the member of the port at a smaller index will be bound earlier.

The priority assignment based on indices is natural and easy to control at
runtime. However, as discussed in the end of Section 2, priorities based on model
element construction time can be dangerous when used during analysis. There-
fore, we implement the order of port bindings only with respect to replicated
entity indices, and leave other decision choices totally non-deterministic. Such
an implementation deviates from the actual Rose RT semantics, and results in
a super set of the model behavior that Rose-RT allows. Due to space limitations
we omit the details of the implementation of Rose-RT port binding here, which
can be found in [20].

Actor reference incarnation and destruction. The method incarnateAt of the
class ActorInstance incarnates a sub-actor reference at a particular index. The
method restricts the incarnated reference to be optional. After creating a new
actor instance for the reference, the method checks whether there are now ports
that need to be bound, and binds them using the most general strategy as
described previously. The destruction of an actor reference unplugs all the ports
in the actor that the reference at a particular index points to, and then removes
the actor pointer from the reference at the index.

Actor importation and deportation. The informal UML-RT semantic regarding
actor importation and deportation in [27] results in yet another substantial am-
biguity. For an actor to be imported to a reference, it states that the actor must
satisfy all the contracts that the reference has with its environment: If there is
a binding defined for the reference, then the actor must have a free port that
can be bound by this definition. Some confusion is again introduced through the
concept of replication. As an example, when a replicated port of an imported
reference needs to be bound during importation, it is not clear whether all mem-
bers of the corresponding port in the imported actor must be free, or only some
members of the port need to be free. Our solution, as shown in Figure 9, gives the
most general semantics requiring that, for each binding definition that involves
the imported actor reference, at least one actual binding can be established by
this definition during importation.

Substitutability. The importAt method requires the imported actor be of the
same class as the imported reference is. This is however unnecessary when sub-
stitutability is allowed. In this case, it is sufficient that the imported actor has
a compatible set of ports to satisfy the binding contracts of the respective refer-
ence. However, the informally described communication interface compatibility
gives rise to further ambiguities and confusions. We will address this issue in
future work.



14 Stefan Leue et al.

public procedure importAt(actor as ActorInstance, aRef as ImportedActorReference,
index as Integer)

require actor.getClass() = aRef.getClass() and aRef in subActorRefs

and not aRef.isInstantiatedAt(index)
step

aRef.setInstanceAt(index, actor)
step

if (forall bDef in myClass.getBindingDefs holds getAllPossibleBindings(bDef) <> {})
then step while exists binding in getAllPossibleBindings()

where binding.bothPartiesFree()

// bind port here.
else

WriteLine("No binding possible. Importation fails.")
throw new Exception()

Fig. 9. The AsmL implementation of actor importation.

5.7 Controllers

We define controllers as an AsmL interface, which has the advantage that various
concrete controllers can be implemented. We have implemented three controllers:
(1) most general controllers using bag-like data structures for storing messages;
(2) CFSM-based controllers using FIFO message queues; and (3) Rose-RT con-
trollers that we discuss in detail in the following. The definitions for (1) and (2)
can be found in [20].

Rose-RT controllers. A Rose-RT controller c can host multiple actor instances.
It does not however offer a separate FIFO message queue for each end port of
each hosted actor. Instead, it builds two queues, shared by all contained actors,
for each kind of message priorities. One queue is to store internal messages, i.e.,
messages whose sender and receiver are both hosted by c. The other queue is for
external messages whose sending actor resides in a different controller than c.

Scheduling executions of hosted actors. The makeStep method of the class
RoseRTController, as shown in Figure 10, shows how a Rose RT controller sched-
ules the executions of its hosted actors. The pre-condition of the method requires
at least one actor to be executable, by checking whether there is a fireable tran-
sition. The principle of searching for fireable transitions is described as follows:
It first appends the content of the highest-priority non-empty incoming message
queue to the internal queue of the same priority. It then checks the head message
of the internal queue of the highest priority. If the message cannot be used to
trigger any transition, it checks the queue of the next lower priority. Whenever
it finds a message that can be used to trigger (possibly multiple) transitions, the
searching terminates and returns the set of fireable transitions triggered by that
message. The makeStep chooses randomly a fireable transition to execute.

5.8 Run Time Environment

The role of a run time environment is to schedule controllers and to provide
model designers with a set of operations such as actor incarnation and message



An AsmL Semantics for UML-RT 15

class RoseRTController implements Controller
public procedure makeStep(re as RunTimeEnvironment)

require executable()
choose (actor, transition, buffer) in getFireableTransitions()

step

// Receive message here.
step

actor.getCurrentState().getExitAction().execute(actor, re)
step

transition.getAction().execute(actor, re)
step

actor.move(transition)

step
actor.getCurrentState().getEntryAction().execute(actor, re)

Fig. 10. The AsmL implementation of the Rose RT controller scheduling method.

sending. Figure 11 shows a part of the AsmL interface for run time environ-
ments. The last method run is used to execute a model. The other methods
shown in the figure are functions that can be called in user-defined actions to
incarnate/destroy actor references, import/deport actors, send messages, etc.

interface RunTimeEnvironment

sendAt(actor as ActorInstance, portName as String, index as Integer, message as Message)
incarnateAt(actor as ActorInstance, refName as String, index as Integer,

controller as Controller)

destroyAt(actor as ActorInstance, refName as String, index as Integer)
importActorAt(actor as ActorInstance, inst as ActorInstance, refName as String,

index as Integer)
deportActorAt(actor as ActorInstance, refName as String, index as Integer)
run(model as Model)

Fig. 11. The AsmL interface of run time environments.

Rose-RT run time environment. Figure 12 shows the implementation of the run

method in the class RoseRTRunTimeEnvironment. Controllers run on separate
threads in the Rose-RT run time environment, and the order of controller ex-
ecutions is therefore non-deterministic. Note that every model has one unique
capsule class whose only instance at run time is used as the top container for
all other capsules in the model. The model execution starts by creating an in-
stance of the top capsule class. Afterwards, the executions of existing controllers
interleave, along which new controllers may be created and destroyed. In each
interleaving step, the run time environment checks whether there are any ex-
ecutable controllers from which a random one is picked for execution. If no
executable controller exists, then the run time environment arbitrarily takes a
non-empty message buffer in the system and removes the head message of that
buffer. This makes sure that an unused message does not block the availability
of other messages in the same queue.



16 Stefan Leue et al.

class RoseRTRunTimeEnvironment implements RunTimeEnvironment
private var controllers as Set of RoseRTController

public procedure run(model as Model)
step

let topActorInst = new ActorInstance(model.getTopActorClass())

let topController = new RoseRTController()
step

topController.addActor(topActorInst)
add topController to controllers

step while (exists controller in controllers where (controller.executable()
or controller.containsNonEmptyBuffer()))

if (exists controller in controllers where controller.executable()) then

let executables = {controller | controller in controllers where controller.executable()}
choose controller in executables

controller.makeStep(me)
else

choose controller in controllers where controller.containsNonEmptyBuffer()

controller.removeSomeHeadMessage()

Fig. 12. The AsmL implementation of the Rose-RT run time environment.

5.9 Model Descriptions

The AsmL specification of a concrete UML-RT model is represented by a set
of syntactic definitions of model elements based on the meta-model level data
structures. A Rose-RT model in AsmL is composed of a set of capsule classes
and the top capsule class. The set of protocols is not explicitly presented. As
mentioned previously, the transformation of a Rose-RT model into its AsmL def-
inition can be fully automated since it is a direct syntactic mapping. Exceptions
are transition actions that can be written in a high level programming language
like Java. Due to the different expressiveness and semantics of Java and AsmL,
we cannot map the whole Java language into AsmL. However, a large part of
Java features and statements can still be straightforwardly and automatically
translated to AsmL equivalents. Figure 13 gives partly the AsmL specification
of the model in Figure 1.

6 Validating Models with SURTA

With the support of Spec Explorer, we intend to use the UML-RT semantics de-
fined in SURTA to accomplish the following tasks: (1) model checking UML-RT
models; (2) simulating UML-RT models for checking potential property viola-
tions; and (3) test case generation for model-based testing [7]. Model-based test-
ing is out of the scope of this paper, and we will investigate this in future work.
Model checking is impeded by the fact that the currently publicly available ver-
sion of SpecExplorer is not completely exploring the state space, in particular if
the AsmL model includes nondeterminisic choices, as is the case in SURTA code.
We hence illustrate how the random walk simulation feature of SpecExplorer can
be used to reveal property violations for Rose-RT models.

Consider a simple model of a resource sharing system in which a central server
grants exclusive access to a shared object to multiple clients. In the model, a



An AsmL Semantics for UML-RT 17

class SCMSRAction implements Action
public procedure execute(actor as ActorInstance, re as RunTimeEnvironment) as Boolean

var theClient as ActorInstance = re.getLastReceivedMessage(actor).getData()
as ActorInstance

step

re.importActor(actor, theClient, "serviceAccessorCoor")
step

re.importActor(actor, theClient, "serviceAccessorS")
step

let srMessage = new Message("serviceReady", RoseRTMessagePriority.general)
re.send(actor, "connectionSetup", srMessage)

step

re.deportActor(actor, "serviceAccessorCoor")
// ... ...

// Define the ServiceConnectionManager class
let serviceAPort = new ExternalWiredEndPortDefinition("serviceAccess",

serviceAccessProt, true)

let service = new FixedCapsuleRoleDefinition("service", threeAdderClass, 8)
let SCMActive = new State("Active")

let sCMSRTGuard = new SCMSRTGuard()
let SCMSRTTrigger = new Trigger("serviceRequest", serviceAPort, sCMSRTGuard)

let sCMSRAction = new SCMSRAction()
let SCMSRTTran = new Transition("serviceRequest1", SCMActive, SCMActive, {SCMSRTTrigger},

sCMSRAction)

let SCMStateMachine = new StateMachine({SCMInit, SCMActive, SCMFull}, SCMInit,
{SCMInitTran, SCMSRTTran, SCMSRFTran, SCMRSRTran, SCMDeportTran1, SCMDeportTran2})

let activeVar = new VariableDefinition("active", type of Integer)
let serviceConnectionManagerClass = new CapsuleClass(

"ServiceConnectionManager", {service, serviceAccessorS, serviceAccessorCoor},

{serviceAPort, connectionTPort, connectionSPort}, {SCMConn1, SCMConn2, SCMConn3},
{activeVar}, SCMStateMachine)

let System5Class = new CapsuleClass("System5", {clientManager, serviceConnectionManager},
{}, {System5Conn}, {})

let capsuleClasses = {System5Class, serviceAccessorClass, clientSys5Class,
clientManagerClass, threeAdderClass,

serviceConnectionManagerClass}

let model = new RoseRTModel("System5", capsuleClasses, System5Class)

Fig. 13. The AsmL specification of the model in Figure 1.

client is possessing the object access when it is in the operation state. An
important safety property, sometimes referred to as mutual exclusion, is that
no more than one client is allowed to have access at any given point in time,
i.e., only one client can be at the operation state. In SURTA, we encode the
negation of the property into the function multipleAccess in a MuTexVerification

class, as shown in Figure 14. This function is checked by the check method of
the class. The run method of the RoseRTRunTimeEnvironment is modified to
invoke the check method after each interleaving step. In this way, the property
is checked automatically in every step of the model simulation.

An example for the checking of the violation of a liveness property is the
fairness constraint that each client will eventually be granted access to the ob-
ject. This property is encoded in the allHadAccess method in Figure 14. The
method always returns true during the simulation, and in the meantime adds a
client to the set hadAccess when the client reaches the state operation. When
the simulation terminates, it checks whether all clients were added to the set.
When this is not the case, the liveness property is violated. We checked the two
above properties for the above described ressource sharing system using SURTA



18 Stefan Leue et al.

class MuTexVerification implements Verification
var hadAccess as Set of CapsuleInstance = {}

public function multipleAccess(rte as RunTimeEnvironment) as Boolean
return exists client1 in rte.getCapsuleInstances("client"),

client2 in rte.getCapsuleInstances("client") where client1 <> client2

and client1.getCurrentState().getName = "operation"
and client2.getCurrentState().getName = "operation"

public function allHadAccess(rte as RunTimeEnvironment) as Boolean
initially result as Boolean = true

step
if (forall controller in rte.getControllers() holds

(not controller.executable()) and

(not controller.containsNonEmptyBuffer())) then
result := forall client in rte.getCapsuleInstances("client")

holds client in hadAccess
else

step foreach client in rte.getCapsuleInstances("client") where

client.getCurrentState().getName() = "operation"
add client to hadAccess

step
return result

public procedure check(rte as RunTimeEnvironment)
require (not multipleAccess(rte)) and allHadAccess(rte)
skip

class RoseRTRunTimeEnvironment implements RunTimeEnvironment
public procedure run(model as Model)

step while (exists controller in controllers where (controller.executable()
or controller.containsNonEmptyBuffer()))

// Select an executable controller to execute.

step
try

verification.check(me)
catch

e as Exception: WriteLine("Property violated.")
step

try // This additional check is for liveness properties.

verification.check(me)
catch

e as Exception: WriteLine("Property violated.")

Fig. 14. A verification method to check mutual exclusion.

and SpecExplorer. The simulation revealed that the above mentioned liveness
property was violated. To support debugging, we have SURTA report the state
of the Rose-RT model after each interleaving step of the model execution, which
results in an error trail when the property is violated. In our example, the out-
put error trail suggests that the fairness property is violated because some client
requests were removed when they occupied the head of the respective queue and
could not be used at the moment. For more detail see [20].

7 Conclusion

We have presented an operational, executable semantics for a large portion of
the syntactic features of the modeling language UML-RT. The semantics relies
on a straightforward, syntactic translation of a UML-RT model into an AsmL
representation. We use a layered architecture for the semantics definition, which
interprets the syntactic representation using an AsmL-defined runtime layer.



An AsmL Semantics for UML-RT 19

The separation of syntactic representation and semantic interpretation greatly
facilitates the implementation of semantic variation points, as well as the three-
tiered approach to the different UML-RT semantics. We illustrate how to use
the random walk simulation capability of SpecExplorer in order to show the
violation of safety and liveness properties.

Future work includes an automatic translation of UML-RT models into the
AsmL representation. We also work on providing a semantics for the syntactic
features of UML-RT that we do not currently handle, a task that is facilitated
by the flexible structure of our semantics definition. We will develop a method-
ology for model based testing based on SURTA. We also plan to generalize the
simulation based property validation approach sketched in this paper, in partic-
ular by extending it to handle more general LTL properties. Finally, we expect
a complete state space exploration for AsmL to become available, which would
avail our semantics to complete model checking.

Acknowledgment. We thank Daniel Butnaru for his assistance in implementing
the SURTA project.

References

1. K. B. Akhlaki, M. I. C. Tuñón, and J. A. H. Terriza. Design of real-time systems by
systematic transformation of UML/RT models into simple timed process algebra
system specifications. In Proc. ICEIS (3), pages 290–297, 2006.

2. AsmL – Abstract State Machine Language (Microsoft). http://research.

microsoft.com/fse/asml.
3. J. Bezerra and C. M. Hirata. A semantics for UML-RT using π-calculus. In Proc.

RSP 2007, pages 75–82, 2007.
4. E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System

Design and Analysis. Springer-Verlag, 2003.
5. J. S. Bradbury, J. R. Cordy, J. Dingel, and M. Wermelinger. A survey of self-

management in dynamic software architecture specifications. In Proc. WOSS, pages
28–33. ACM, 2004.

6. D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of
the ACM, 30(2):323–342, 1983.

7. C. Campbell, W. Grieskamp, L. Nachmanson, W. Schulte, N. Tillmann, and
M. Veanes. Model-based testing of object-oriented reactive systems with Spec
Explorer. Technical Report MST-TR-2005-59, Microsoft Research, 2005.

8. M. I. Capel, L. E. M. Morales, K. B. Akhlaki, and J. A. H. Terriza. A semantic
formalization of UML-RT models with CSP+T processes applicable to real-time
systems verification. In Proc. JISBD, pages 283–292, 2006.

9. G. Engels, J. M. Küster, R. Heckel, and L. Groenewegen. A methodology for spec-
ifying and analyzing consistency of object-oriented behavioral models. In ESEC /
SIGSOFT FSE, pages 186–195. ACM Press, 2001.

10. C. Fischer, E.-R. Olderog, and H. Wehrheim. A CSP view on UML-RT structure
diagrams. In FASE 2001, volume 2029 of LNCS. Springer Verlag, 2001.

11. M. Fuchs, D. Nazareth, D. Daniel, and B. Rumpe. BMW-ROOM: An object-
oriented method for ASCET. In SAE’98. Society of Automotive Engineers, 1998.



20 Stefan Leue et al.

12. Q. Gao, L.J. Brown, and L.F. Capretz. Extending UML-RT for control system
modeling. American Journal of Applied Sciences, 1(4):338–347, 2004.

13. R. Grosu, M. Broy, B. Selic, and G. Stefanescu. Towards a calculus for UML-RT
specifications. In Proc. OOPSLA, 1998.

14. G. Gullekson. Designing for concurrency and distribution with Rational
Rose RealTime, 2003. Rational Software White Paper. http://www.ibm.com/

developerworks/rational/library/269.html.
15. Y. Gurevich, B. Rossman, and W. Schulte. Semantic essence of AsmL. Theor.

Comput. Sci., 343(3):370–412, 2005.
16. A. Habibi and S. Tahar. AsmL semantics in fixpoint. In Proc. ASM, pages 233–246,

2005.
17. D. Herzberg. UML-RT as a candidate for modeling embedded real-time systems in

the telecommunication domain. In UML’99, volume 1723 of LNCS, pages 330–338.
Springer, 1999.

18. M. Kardoš. Automated formal verification for UML-based model driven design of
embedded systems. PhD thesis, Slovak University of Technology, 2006.

19. A. Knapp, S. Merz, and C. Rauh. Model checking timed UML state machines and
collaborations. In FTRTFT’02, volume 2469 of LNCS, pages 395–416. Springer,
2002.

20. S. Leue, A. Ştefănescu, and W. Wei. An AsmL semantics for dynamic structures
and run time schedulability in UML-RT. Technical Report soft-08-02, Univer-
sity of Konstanz, 2008. Available from http://www.inf.uni-konstanz.de/soft/

publications en.php.
21. OMG Model Driven Architecture (MDA). http://www.omg.org/mda.
22. R. Ramos, A. Sampaio, and A. Mota. A semantics for UML-RT active classes

via mapping into Circus. In FMOODS’05, volume 3535 of LNCS, pages 99–114.
Springer, 2005.

23. Rational Rose RealTime tool. Shipped within Rational Rose Technical Developer:
http://www.ibm.com/software/awdtools/developer/technical.

24. M. Saaltink. Generating and analysing Promela from RoseRT models. Technical
Report TR-99-5537-02, ORA Canada, 1208 One Nicholas Street, Ottawa Ontario,
K1N 7B7, Canada, 1999.

25. M. Saksena, P. Freedman, and P. Rodzewicz. Guidelines for automated implemen-
tation of executable object oriented models for real-time embedded control sys-
tems. In Proc. of the IEEE Real-Time Systems Symposium, pages 240–25. IEEE
Computer Society, 1997.

26. B. Selic. Turning clockwise: using UML in the real-time domain. Comm. of the
ACM, 42(10):46–54, Oct. 1999.

27. B. Selic, G. Gullekson, and P.T. Ward. Real-Time Object-Oriented Modeling. John
Wiley & Sons, Inc., 1994.

28. B. Selic and J. Rumbaugh. Using UML for modeling complex real-time
systems. http://www.ibm.com/developerworks/rational/library/139.html,
March 1998.

29. Spec Explorer tool. http://research.microsoft.com/SpecExplorer.
30. M. von der Beeck. A formal semantics of UML-RT. In Proc. MoDELS, volume

4199 of LNCS, pages 768–782. Springer, 2006.


