
Improving Testing of Enterprise Systems by Model-based Testing on Graphical User
Interfaces

Sebastian Wieczorek and Alin Stefanescu
SAP Research

Darmstadt, Germany
{name.surname}@sap.com

Abstract—Software development and testing of Enterprise
Resource Planning (ERP) systems demands dedicated methods
to tackle its special features. As manual testing is not able to
systematically test ERP systems due to the involved complexity,
an efficient testing approach should be automatic. Since the
underlying business processes of enterprise systems are realized
at the level of the user interface (UI), system level testing is
the dominant testing approach. The recent architectural shift
to service-based enterprise systems demands to apply black-
box testing techniques. Model-based testing is a method that
enables a high degree of automation for black-box testing, but
the current research and practice usually does not address the
UI. In this paper we describe the state of the art and state of
the practice in order to motivate further research activities in
this area.

Keywords-Model-based Testing; Enterprise Systems; Service-
oriented Architecture; UI Testing; System-level Testing

I. INTRODUCTION

Enterprise Resource Planning (ERP) software [1] supports
business processes for whole companies. Such software sys-
tems are typically very large. SAP R/3 software for instance
consists of more than 250 million lines of code [2]. ERP
software integrates many organizational parts and functions
into one logical software system, posing unique challenges
to software development and testing [3]. Enterprise Service
Oriented Architecture (Enterprise SOA) [4] is regarded as
the next evolutionary step to cope with the software com-
plexity of ERP systems where monolithic approaches are not
applicable anymore. In Enterprise SOA, an application plat-
form consists of independent business components exhibit-
ing enterprise services that can be composed individually to
form customized business processes.

Service-oriented architectures (SOA) are gaining pace
towards becoming mainstream. Forrester studies and surveys
[5], [6] of more than 2200 IT decision makers across North-
America and Europe show that 2/3 of the companies expect
to be using SOA by the end of 2009 while 60% of those
currently using it are expanding their usage. Leading firms
now use SOA on more than 50% of their solution delivery
projects. SAP, a leading provider of business software,
delivers SOA-enabled software, SOA methodology guide-
lines, and professional services [4]. Such a widespread SOA

adoption implies that the quality assurance of the service-
based systems becomes an activity of paramount importance,
with a special focus on SOA testing.

While service unit testing is usually well researched [7]–
[10] and consistently deployed in practice, other testing
activities pose several new challenges [11], [12]. The dif-
ficulties to be overcome are due to the heterogeneity, high
distributivity, dynamicity, and loose coupling of the service-
based systems. These complexity properties are taking their
toll on the testing process. A model-driven approach to SOA
integration helps to address such challenges, as it allows
for a general solution, applying state-of-the-art tools and
techniques for formal reasoning about service models [10]
and model-based testing (MBT) [13], [14].

In this paper we explain, why model-based GUI testing is
an interesting but little covered research subject, especially
considering the market relevance of enterprise software. In
Section II we describe that the necessary application of the
SOA paradigms for enterprise software systems implies that
black-box testing techniques have to be used. In Section III
we explain the relevance of testing SOA applications at
system level. In Section IV we laid out that current test
automation in the industry only takes place for the test exe-
cution and that any applicable testing approach for enterprise
software has to be based on the system’s user interface. In
Section V we mention some related work on applying MBT
on GUI systems. Section VI describes our plans on investing
some more research in the area and Section VII concludes
the paper.

II. CURRENT SOA TESTING CHALLENGES

Since the most modern enterprise systems have SOA
as the underlying paradigm, we must first understand the
challenges in the developement and testing of these systems.

When new programming paradigms, such as the ones
associated with SOA, are emerging, it naturally arouses the
question whether there is a need for new testing methods or
whether existing approaches can be adapted. More concrete,
it has to be determined whether approaches and techniques,
developed for traditional monolithic systems, distributed
systems, component-based systems, and web applications
can be adapted to service-based systems. In order to provide



an answer, the particularities and challenges of SOA testing
have to be analyzed.

The authors of [11] identified the following key distin-
guishing factors for SOA that generate unique challenges
for the testing activities:

• Lack of code access. For users, services are just inter-
faces as they neither have knowledge about the structure
of the code nor the possibility to observe its execution.
These limitations are preventing any form of white-box
testing for users.

• Dynamicity and adaptiveness. For traditional systems,
one is always able to determine at least the set of
possible targets for a call [15]. This is not true for
SOA where the work flow of abstract services might
be bound to concrete services retrieved from one or
more registries during execution.

• Lack of control. Services are deployed independently
and might be updated without informing the consumers.
Therefore service can unexpectedly change their behav-
ior or miss service level agreements.

• Lack of trust. As decisions for choosing a certain ser-
vice solely depend on information that the provider is
publishing. Therefore there exists the risk that potential
users are negatively influenced by providing them with
incorrect or inaccurate information.

• Cost of testing. As test invocation by users may cause
cost or other undesirable effects (e.g. an experience of a
denial-of-service attack) on the provider side, extensive
or repeated testing might not be feasible.

A slightly different approach has been taken in [16], where
the challenges of SOA testing are clustered to the items
Stakeholder separation, Service integration, Service version-
ing and migration and Service binding and reconfiguration.
However, this regrouping neither leaves out nor introduces
additional aspects.

Considering the challenges derived from [11], some gen-
eral implications can be derived. It seems reasonable that the
first three items - namely lack of code access, dynamicity and
adaptiveness, and lack of control - are dealing with technical
challenges while the following items - lack of trust and cost
of testing - may have to be solved on the management level.

For addressing the management challenges group, it may
be necessary to provide means of interaction between stake-
holders, in order to share information and rights. Whether
these means of interaction have to provide for anonymity,
as it is presumed in [16] will be seen. However, the con-
servatism of major business companies and the consequent
request for knowing and trusting business partners will
probably lead to different solutions [1].

The technical chellenges group clearly requires that black-
box testing techniques should be applied, as code access in
a SOA environment is limited. Dynamicity and adaptiveness
itself can only be achieved by providing detailed information
about interfaces. Otherwise (in-)compatibilities cannot be

Figure 1. SOA testing layers as presented in [18]

detected and handled automatically. Therefore it can be
assumed that MBT will be have a much greater impact in
the testing process than in traditional industrial development
setups, where modeling is carried out rather sporadically.
The lack of control over parts of the system implies that tests
will have to be carried out not only in the development of
a service-based application, but also regularly after deploy-
ment. Therefore having automatic regression tests in place is
a natural conclusion [17]. Moreover, the GUI testing might
be in many case the only possibility of testing the functional
and non-functional properties of a service-based system.

III. THE ENTERPRISE SOA TESTING STACK

After having discussed the general challenges of SOA
testing, a closer look will be taken on the particular testing
activities, in order to see which of them is affected in what
way. In [13], the commonly used layered testing approach
for component-based systems (CBS) has been described. As
the general idea of partitioning applications into logical units
is somehow similar to the SOA approach of encapsulating
related functional units in a service, the definition of SOA
testing layers can be done analogous to the one for CBSs.
Consequently four distinct testing layers, illustrated in Fig-
ure 1, can be distinguished [18]. In the following each layer
is shortly introduced.

Unit Testing: Unit testing is the best understood testing
layer in research and practice. In contrast to all other testing
layers, unit testing focuses on getting confidence in the func-
tional correctness and hence in the correct implementation
of the algorithms. As mentioned above, it deals with single
software units in isolation. During unit testing the execution
context of the software unit under test is mocked. Therefore,
it can be carried out in SOA systems just like in any CBS
implementation or any other software architecture, using all
available tools and techniques.



Service Testing: Also service testing for SOA is analog
to the testing of components in the CBS world to some
extend. The general focus of service testing is less on the
correct implementation of algorithms but on the integration
of the functional units inside the (service) component and
on the fulfillment of the contractual obligations of the com-
ponent’s interfaces. This is also conforming to the definition
of testing layers [19], were it is argued that everything apart
from unit testing is a form of integration testing.

Integration Testing: As mentioned before, the loose
coupling of service components is one of the distinguishing
factors of SOA. In contrast to the CBS approach, integra-
tion testing cannot rely on homogeneous components with
tightly connected interfaces. Instead, the adaptability and
distribution of SOA demands additional considerations for
integration testing. Especially the effects of message racing
and its implications have to be considered during system
development and should be tested thoroughly [18]. Message
racing in this context refers to situations where messages are
not received in the same order as they are sent.

System Testing: In the SOA world, system testing can
be defined analog to the classical definition for CBS, as
comprising the fully integrated application, usually using
its externally exposed interfaces. As the faultless interplay
of the services can be assured on the integration testing
level, in practice system testing is based on high-level
usage scenarios and business requirements that have been
defined by business analysts or customers. UI-based testing
is therefore most appropriate to carry out the tests, as the
system should be validated as a whole and only using access
points that are available to the prospect user.

IV. A GLIMPSE IN THE STATE OF THE PRACTICE

In the past, a significant effort has been put by the
software industry to increase the efficiency of testing. Test
automation in this context has been regarded as the most
promising way. State of the practice of test automation for
enterprise software is the automation of the test execution
process, while the test design (the definition of abstract test
cases and their concretization) is in general still a manual
task.

At SAP, the transformation from abstract test cases to
executable test scripts usually follows the keyword-driven
testing principles. Keyword-driven testing (or action-word
testing) uses action keywords in the test cases, in addition
to data. Each action keyword corresponds to a fragment of a
test script (the adapter code), which allows the test execution
tool to translate a sequence of keywords and data values into
executable tests [13].

The introduced keywords are for example realized on top
of SAP’s eCATT test script language [20]. To allow the
highest possible reuse, they are oriented on the structure
of the enterprise system itself, which is organized in so-
called transactions. A transaction offers a set of methods

to alter an enterprise’s internal data in a consistent way.
As most of the offered data modifications do not demand
extensive computation, the transaction’s functional logic is
usually realized by the user interface and therefore can not
be tested separately.

Therefore, implementing testing keywords is mostly done
by utilizing capture/replay functionality, which is provided
by most of the test automation tools. These tools are
monitoring user interactions on the interface and producing
a test script that can reproduce the execution of the recorded
sequence of events. SAP’s Test Workbench can be used
to capture eCATT scripts, which further enables to give
them more flexibility by exchanging concrete values with
variables that can be initialized independently through the
interface of the script. For complex transactions, a captured
script can further be broken down to multiple scripts with
lower complexity.

The test data used for the test runs on the SUT is usually
very complex and additionally has to be compliant with
existing master data and the actual system configurations [3].
Therefore, the current practice is to leverage the experience
of the testers, who are asked to provide appropriate test data.

SAP further provides a tool called Test Data Migration
Server (TDMS), which is able to derive consistent reference
data from existing systems. It is also quite common that
reference test data is provided by customers or internal
departments, as additional information to the requirement
specification. If these data samples are available, testers are
able to choose the appropriate input for each test case from
that source.

At SAP the test execution is controlled by the Test
Workbench, where test plans (consisting of multiple test
suites) are executed automatically and periodically in the
case of regression tests. The results of the test runs are
centrally reported, including different coverage criteria based
on source code, model elements or requirements. Figure 2
shows, how eCATT automates the test execution, by having
a global test scripts calling the referenced keyword scripts
of each test step. The results of each test step are transferred
to the next script using exporting and importing functions.

V. A GLIMPSE IN THE STATE OF THE ART ON MBT FOR
GUIS

Model-based testing has recently received a lot of at-
tention both in the academic as well as the industrial
communities, with a couple of books published [13], [14],
[21] and several dedicated workshops (A-MOST, MBT,
MOTES, MOTIP etc.). Moreover, there is already a market
with several MBT commercial tools (like Qtronic from Con-
formiq, TestDesigner from Smartesting, and SpecExplorer
from Microsoft). However, most of the tools and methods
work for funtional testing during the software development
phase and very few methods are available for the system
level testing and especially UI testing. Some reasons for



Figure 2. Industrial reuse concept of capture/replay scripts

that are the lack of precise models at the UI level based on
the business processes, the large number of possible states
and user events in modern GUIs and the UI dynamicity and
runtime adaptation. One of the most complete reference on
the research on MBT for GUI systems is [22]. This paper
proposes a general event-flow model for GUI systems that
can be used on the existing work of testcase generation,
test oracle creation and regression testing. The work of [23]
proposes annotated UML activity diagrams as modeling
environement for GUIs. On the industrial side of research,
[24] showed the difficulties of using the AGEDIS tools on
a real GUI testing systems, whereas [25] shows how to use
the Microsoft tool SpecExplorer for GUI testing.

VI. PLANNED ACTIVITIES

As we have seen in the previous two sections, there
is more need for research in order to successfully apply
MBT to GUIs in an industrial setting. Figure 3 depicts the
envisioned system testing approach that defines the research
plan. As explained in Section III, system testing is carried
out when the whole system (or at least major parts of it)
is developed and test ready. In the following the individual
steps of such approach are described. The development of
the system or the adjustment of an already existing solution
is left out of this description. It should happen previous or
in parallel with the second step.

1) Members of consulting, key customers and develop-
ment architects are deriving business process models
for a new product or feature or customer implementa-
tion according to the market’s or customer require-
ments and based on SAP’s expertise on industrial
best practices. Such processes can be modeled using
the Business Process Modeling (BPM) product of

SAP NetWeaver and then the UI elements and their
connections can be modeled with the Visual Composer
tool - see Figure 4 for two screenshots.

2) The created content, which effectively describes the
usage scenarios of the new functionality is used to
generate test model skeletons. By utilizing model
transformation techniques this step should be auto-
matic.

3) The test models are afterwards enhanced by test en-
gineers, such that they reflect previously defined test
goals and acknowledge the specifics of the concrete
software architecture.

4) From the test models, abstract test suites are derived
automatically, using model-based testing techniques.

5) The abstract test suites are optimized according to
industrial best practices (e.g. minimizing test case
length while preserving test coverage). After further
concretizations, the optimized suite is executed auto-
matically on the user interface of the system under
test.

VII. CONCLUSION

In this paper we tried to motivate and draw some guiding
lines of research in the area of system testing for enterprise
systems, with a focus on GUI testing. The research will aim
at improving the state of the art and state of the practice
by using MBT techniques. This future work will leverage
the existing work in GUI testing and MBT and try to
find solutions that overcome the new challenges deriving
from the new SOA paradigm. One key success element in
this endeavor will be the modeling part that will have to
address the complex test data, existing models for business
processes and UI composition, and dynamic aspects of UI



Figure 3. Envisioned testing process

at runtime. This research will contribute to a more reliable
and automatically testable SOA enterprise applications.

ACKNOWLEDGMENT

This work was partially supported by the EC-funded
projects Modelplex1 and Deploy2 (grants no. 034081 and
214158).

REFERENCES

[1] D. E. O’Leary, Enterprise Resource Planning systems. Sys-
tems, life cycle, electronic commerce and risk. Cambridge
University Press, 2000.

[2] G. Pike, “Supporting business innovation while reducing
technology risk,” SAP AG, Tech. Rep., 2006. [Online].
Available: http://www.sap.com/services/programs/pdf/BWP
Supporting Business Innovation.pdf

[3] S. Wieczorek, A. Stefanescu, and I. Schieferdecker, “Test data
provision for ERP systems,” in Proc. of Int. Conf. on Software
Testing (ICST’08). IEEE Computer Society, 2008, pp. 396–
403.

[4] D. Woods and T. Mattern, Enterprise SOA - Designing IT for
Business Innovation. O’Reilly, 2006.

[5] Forrester, “Enterprise and SMB software survey, North Amer-
ica And Europe, Q4 2008,” Forrester Research, Business Data
Service Survey, 2008.

[6] R. Heffner, “Across all vertical industry groups, the majority
of SOA users are expanding its use,” Forrester Research,
Research Report, May 2009.

1http://www.modelplex-ist.org
2http://www.deploy-project.eu

Figure 4. Example of models for business processes and UI composition

[7] C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini,
“Towards automated WSDL-based testing of web services,”
in Intern. Conf. on Service-oriented Computing (ICSOC’08),
ser. Lecture Notes in Computer Science, vol. 5364, 2008, pp.
524–529.

[8] W.-T. Tsai, Y. Chen, R. A. Paul, H. Huang, X. Zhou, and
X. Wei, “Adaptive testing, oracle generation, and test case
ranking for web services,” in 29th Int. Computer Software and
Applications Conference (COMPSAC’05). IEEE Computer
Society, 2005, pp. 101–106.

[9] J. Offutt and W. Xu, “Generating test cases for web services
using data perturbation,” SIGSOFT Softw. Eng. Notes, vol. 29,
no. 5, pp. 1–10, 2004.

[10] L. Baresi and E. Di Nitto, Test and Analysis of Web Services.
Springer, 2007.

[11] G. Canfora and M. D. Penta, “Service-oriented architectures
testing: A survey,” in Software Engineering: International
Summer Schools, ISSSE 2006-2008, Revised Tutorial Lec-
tures. Springer-Verlag, 2009, pp. 78–105.

[12] A. Barbir, C. Hobbs, E. Bertino, F. Hirsch, and L. Martino,
“Challenges of testing web services and security in SOA
implementations,” in Test and Analysis of Web Services.
Springer, 2007, pp. 395–440.

[13] M. Utting and B. Legeard, Practical model-based testing, a
tools approach. Morgan Kaufmann, 2007.



[14] P. Baker, Z. R. Dai, J. J. Grabowski, Ø. Haugen, I. Schiefer-
decker, and C. Williams, Model-Driven Testing: Using the
UML Testing Profile. Springer, 2008.

[15] A. Milanova, A. Rountev, and B. Ryder, “Parameterized
object sensitivity for points-to analysis for Java,” ACM Trans-
actions on Software Engineering and Methodology (TOSEM),
vol. 14, no. 1, pp. 1–41, 2005.

[16] M. Greiler, H.-G. Gross, and K. A. Nasr, “Runtime integration
and testing for highly dynamic service oriented ict solutions,”
in Proc. of Testing: Academic & Industrial Conference -
Practice and research techniques (TAICPART’09). IEEE
Computer Society, 2009.

[17] M. Acharya, A. Kulkarni, R. Kuppili, R. Mani, N. More,
S. Narayanan, P. Patel, K. Schuelke, and S. Subramanian,
“SOA in the real world - experiences,” in Service-Oriented
Computing (ICSOC), vol. 3826, 2005, pp. 437–449.

[18] S. Wieczorek and A. Stefanescu, “Service integration: A soft
spot in the SOA testing stack,” in To appear in Proceedings of
the 5th Central and Eastern European Software Engineering
Conference in Russia (CEE-SECR’09). IEEE Computer
Society, 2009.

[19] S. Ali, L. C. Briand, M. J.-U. Rehman, H. Asghar, M. Z. Z.
Iqbal, and A. Nadeem, “A state-based approach to integration
testing based on UML models,” Information & Software
Technology, vol. 49, no. 11-12, pp. 1087–1106, 2007.

[20] M. Helfen, M. Lauer, and H. M. Trauthwein, Testing SAP
Solutions. SAP Press, 2007.

[21] J. Jacky, M. Veanes, C. Campbell, and W. Schulte, Model-
based Software Testing and Analysis with C#. Cambridge
University Press, 2008.

[22] A. M. Memon, “An event-flow model of GUI-based applica-
tions for testing,” Softw. Test., Verif. Reliab., vol. 17, no. 3,
pp. 137–157, 2007.

[23] M. Vieira, J. Leduc, B. Hasling, R. Subramanyan, and
J. Kazmeier, “Automation of GUI testing using a model-
driven approach,” in AST ’06: Proceedings of the 2006
international workshop on Automation of software test. New
York, NY, USA: ACM, 2006, pp. 9–14.

[24] I. Craggs, M. Sardis, and T. Heuillard, “AGEDIS case
studies: Model-based testing in industry,” in Proceedings of
the 1st European Conference on Model Driven Software
Engineering. Imbus AG, 2003, pp. 129–132, online at:
http://www.agedis.de/documents/AGEDIS in Industry.PDF.

[25] A. Paiva, J. C. P. Faria, N. Tillmann, and R. F. A. M. Vidal, “A
model-to-implementation mapping tool for automated model-
based GUI testing,” in ICFEM’05, ser. Lecture Notes in
Computer Science, vol. 3785. Springer, 2005, pp. 450–464.


