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Abstract. The execution of a reactive system amounts to the repeti-
tions of executions of control flow cycles in the component processes of
the system. The way in which cycle executions are combined is not ar-
bitrary since cycles may depend on or exclude one another. We believe
that the information of such dependencies is important to the design,
understanding, and verification of reactive systems. In this paper, we for-
mally define the concept of a cycle dependency, and propose several static
analysis methods to discover such dependencies. We have implemented
several strategies for computing cycle dependencies and compared their
performance with realistic models of considerable size. It is also shown
how the detection of accurate dependencies is used to improve a livelock
freedom analysis that we developed previously.

1 Introduction

The main purpose of a concurrent reactive system is to maintain an ongoing
interaction with its environment [15]. The execution of the system is therefore
expected to last forever. Since each component process in the system has a finite
control structure, any infinite execution of the system is essentially an infinite
repetition of a certain set of control flow cycles in the concurrent processes that
form the system. The way in which cycle executions are combined is certainly not
arbitrary. For instance, the repetition of one cycle may rely on the repetitions
of some other cycles; and the execution of one cycle may also eliminate the
possibility of executing some other cycles.

We believe that the information of such cycle dependencies is important to the
design, understanding, and verification of reactive systems. As one example, the
knowledge of cycle dependencies may reveal potential design errors. In a reactive
system, let us suppose that the repetition of a control flow cycle C relies on the
repetitions of other cycles. When we expect C to be executed infinitely often,
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we may want to check statically whether there is any other cycle in the system
on which C relies. The fact that no such cycles can actually be found hints at
an incompleteness in the design or implementation of the system.

The knowledge of cycle dependencies is also useful in the verification of con-
current reactive systems. In our precursory work, we proposed an efficient system
verification framework based on integer linear program (ILP) solving [13,12]. Our
verification methods abstract the original verification problem into an ILP prob-
lem that describes a necessary condition for the violation of the property under
scrutiny. Any solution to the ILP problem corresponds to a counterexample in
the form of a set of cycles. A counterexample is spurious if it is impossible to
repeat the cycles in the counterexample forever without other cycles also being
repeated infinitely often. Consequently, the dependency among cycles stands at
the very core of the refinement procedure based on the detection of spurious
counterexamples in [14,12].

The central contribution of this paper is a formal framework capturing a
notion of dependency between the control flow cycles of the concurrent processes.
We also inspect different causes of dependencies, and develop techniques for
discovering dependencies with respect to each cause. In this paper we choose
Promela [9] as modeling language for the systems that we analyze. This choice
is motivated by convenience since a large number of Promela models are available
in the public domain [21] and some of the features of the SPIN tool environment,
which interprets Promela, greatly facilitate our static analysis. We conjecture
that applying our analysis ideas to other modeling and programming languages
based on communicating finite state machines, such as UML-RT, could easily be
accomplished.

Related Work. To the best of our knowledge, there is currently no work address-
ing control flow cycle dependencies. Control flow graphs of general programs were
extensively studied in the area of static program analysis [20] with applications,
e.g., in the area of compiler optimization. Slicing of programs [25,7,18,23] checks
dependences between statements but not cycles. The “may happen in paral-
lel” [19] and “non-concurrency” [16] analyses also consider dependences between
statements. Finally, the INCA verification framework [4,24] studies the relation
between acyclic paths and control flow cycles but not relations among cycles.
Moreover, the above techniques are applied to either sequential programs or syn-
chronous communication settings, while we also address an asynchronous setting
where exchanging messages via buffers is the dominant way of communication.

Structure of the Paper. Section 2 introduces the Promela modeling language, de-
fine cycles and some related concepts. Section 3 defines the concept of
cycle dependencies. We propose in Sections 4 and 5 several static analysis meth-
ods for cycle dependency discovery. Section 6 briefly shows how the discov-
ery of cycle dependencies can help improve the precision of a livelock freedom
test. Section 7 reports the experimental results, before Section 8 concludes the
paper. All the proofs of the theoretical results of the paper can be found in
Appendix A.
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2 Preliminaries

Promela. Promela is the input language of the SPIN explicit state model checker
[9]. It has been successfully used for the modeling and analysis of many concur-
rent systems [10,6]. The Promela language supports asynchronous communi-
cation as well as synchronous rendez-vous communication and synchronization
via shared variables. The subset of the Promela language that we consider in-
cludes the definition of concurrently running processes (“proctype”), commu-
nication channels (“chan” declarations), message sending (“!”) and receiving
(“?”), assignments, condition statements, nondeterministic branching (“if ...
fi”), looping (“do ... od”), and arithmetics. For the sake of simplicity we do
not consider arrays and structured data types in this paper.

1 active proctype client()
2 int x = 0;
3 do
4 :: (x < 3) -> toServer!request; x++;
5 :: (x == 3) ->
6 fromServer?reply; x--;
7 od
8
9 active proctype server()
10 do
11 :: toServer?request -> fromServer!reply;
12 od

x = 0
(x < 3)

request
fromServer?toServer!

reply

x++

x−−

toServer?
request

fromServer!
reply

proctype client()

proctype server()

(x == 3)

Fig. 1. An example Promela model and its control flow graphs

Figure 1 shows a simple Promela model consisting of two processes: client
and server, whose behavior is described by the sequential Promela code within
the respective proctype definition. The process client may send a request
message to the buffer toServer if x < 3 (Line 4). Otherwise, it waits until
a reply message is available in the buffer fromServer and then receives the
message (Line 6). A condition statement such as (x < 3) is a boolean expression
enclosed in parentheses, which acts as a guard to the subsequent statements.
It is executable if and only if the enclosed expression evaluates to true. We
can construct a control flow graph from each of the proctype definitions (see
Figure 1). Each transition corresponds to one statement in the code, and its
source state and target state respectively denote the control points before and
after the execution of the statement.

Control flow cycles. We define a control flow cycle (or simply cycle) in a control
flow graph as a sequence of consecutive transitions in the graph such that the
source state of the first transition in the sequence is the same as the target state
of the last transition. A cycle is elementary (or simple) if no two transitions
in the defining sequence of the cycle have a same source state. Informally, an
elementary cycle cannot be decomposed further into smaller cycles. In the control
flow graph of the process client in Figure 1, there are two elementary cycles.
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Even though a finite control flow graph may contain infinitely many cycles, the
number of elementary cycles is always finite and in the worst case exponential in
the number of transitions. Since any non-elementary cycle can be decomposed
into elementary cycles, our analysis considers only elementary cycles. Unless
otherwise specified, all the cycles mentioned in the following are elementary.

If two cycles share states, then they are neighbors of each other. Any such
shared state is an exit state of the cycles that contain it, because one can exit
one cycle at that state and enter another cycle. The two cycles in the process
client in Figure 1 are neighbors sharing one exit state.

Cycle executions. An infinite run of a Promela model amounts to the repeated
executions of cycles in some processes of the model. For an infinite run r of a
Promela model, let r/p denote the projection of r on the set of transitions in a
process p. Thus, r/p corresponds to the local execution of p in r. Any r/p can
be decomposed into two parts: (1) an acyclic path from the initial state, and
(2) repeated executions of cycles. Given a cycle c in p, one execution of c in
r/p may be interrupted by the executions of other cycles in p: Some part of c
is executed until some exit state s is reached where it starts to execute other
cycles. The execution of c is later resumed from s after the executions of those
interrupting cycles are completed. Since r is an infinite run, at least one cycle in
the model is repeated infinitely often. We denote by IRC (r) (infinitely repeated
cycles) the set of cycles that are executed infinitely often in r. For a process p,
IRC (r/p) is the subset of IRC (r) consisting of only cycles in p. It is easy to see
that IRC (r/p) is either empty or forms a strongly connected subgraph of the
control flow graph of p.

3 Cycle Dependencies

We now define the concept of cycle dependencies. Intuitively, a cycle c depends
on a set of cycles S if the infinite execution of c must be accompanied by the
infinite executions of some cycles in S.

Definition 1. Given a Promela model, a cycle c and a set of cycles S in the
model, we call the pair (c, S) a cycle dependency if they satisfy the following
conditions: a) c /∈ S; and b) for any infinite run r of the model where c ∈ IRC (r),
there exists a cycle c′ ∈ S such that c′ ∈ IRC (r). In this case, we say that c
depends on S.

In the above definition, if all the cycles in S are in the same process as c is, then
(c, S) is a local dependency. Otherwise, (c, S) is a global dependency. Moreover,
if c does not depend on any subset of S, then we say that (c, S) is a minimal
dependency. In the model in Figure 1, we denote by cl (resp. cr) the left (resp.
right) cycle in the process client and by cs the only cycle in the process server.
(cr, {cl, cs}) is a cycle dependency, while (cr, {cl}) and (cr, {cs}) are two minimal
cycle dependencies. In particular, (cr, {cl}) is a local dependency, and (cr, {cs})
is a global dependency.
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If we interpret all message buffers in a Promela model to have only finite
capacities, then the Promela model possesses a finite global state space. In this
case, we show as follows that it is decidable whether (c, S) is a cycle depen-
dency: We construct the global state space for the model and then look for any
elementary of non-elementary cycle in the global state space that contains c but
no cycles from S. If no such global cycles exist, then (c, S) is a cycle depen-
dency. However, we are more interested in infinite state models. If we assume
that buffers in Promela models have infinite capacities and variables may have
infinite domains such as integer variables, then a Promela model may have an
infinite global state space, for which we show in the following theorem that the
above problem becomes undecidable.

Theorem 1. Given a cycle c and a set S of cycles, it is undecidable in general
whether (c, S) is a cycle dependency.

3.1 The Causes of Cycle Dependencies

The root cause for cycle dependencies lies in the executability of Promela state-
ments. Given a cycle, if the executability of every statement along the cycle is
unconditional, then the cycle can be repeated without interruption forever once
the cycle is entered. Such a cycle does not depend on any other cycles. On the
contrary, consider a cycle c that contains a statement s whose executability is
conditional. If s cannot be continuously enabled forever by only repeating c,
then some other cycles need to be executed in order to re-enable s by, e.g., mod-
ifying the values of some variables, sending a message etc. In Promela there are
two kinds of statements with conditional executability: condition statements and
message receiving statements, when we take the assumption that message buffers
have unbounded capacities and message sending statements are therefore always
enabled. In the following we explain how cycle dependencies may be imposed by
these two kinds of statements.

Condition statements. Consider the right cycle cr in the process client in
Figure 1. cr contains a condition statement (x == 3). The condition x = 3
cannot remain true after cr is executed because x is decremented by 1 in the
cycle. Then, cr can be repeated infinitely often only if the left cycle cl is also
repeated infinitely often to modify the value of x such that x can always acquire
the value 3 again. This is one example that a cycle is terminating on a condition
statement along the cycle. Since we focus on discovering cycle dependencies in
this paper, it is out of scope how to determine whether a cycle is terminating,
which is a well-known undecidable problem. In [14] we proposed an incomplete
procedure to prove termination for control flow cycles. There are also many ex-
isting techniques [22,3,5,1] to prove termination for certain kinds of loops in
programs, which can be adapted to prove termination for control flow cycles. In
Section 4 we will show how to determine cycle dependencies from a condition
statement on which a cycle is terminating.
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Message receiving statements. The above mentioned cycle cr contains a mes-
sage receiving statement fromServer?reply. Thus, the cycle cs sending reply
messages has to be repeated infinitely often when cr is to be repeated infinitely
often. In Section 5 we will present a method to determine cycle dependencies
from message receiving statements, which are usually global dependencies.

4 Discovering Dependencies from Condition Statements

We show some types of cycle dependencies imposed by condition statements on
which a cycle is terminating. In order to derive them, we need to discriminate
between different ways in which the variables in a condition statement are mod-
ified in the cycle. A variable is local if its value can be referenced and modified
only by one process. Otherwise, it is a global variable. However, the runtime
value of a local variable may still depend on the executions of other processes.
For instance, given a local variable x, if there is an assignment x = e(y) where
e is an arithmetic expression containing a global variable y, then the runtime
value of x may depend on how y is modified in other processes.

Definition 2. For a cycle c and a variable x, x is globally modified in c if one of
the following is satisfied: a) x is global, or b) there is a message receiving statement
b?msg(x1,...,xn) in c where x is some xi, or c) there is an assignment x = e(y)
in c where y is globally modified in c. Otherwise, x is locally modified in c.

Note that in the above definition we disregard the dependency of the runtime
value of a local variable on a condition statement. The reason is that a control
flow cycle contains only one branch of a condition statement. Therefore, the
impact of the condition statement is fixed in the cycle. Note that we are only
interested in how a variable is modified inside a particular cycle when the cycle
is repeated without interruption.

For a boolean condition B in a cycle c, we denote by var(B) the set of vari-
ables occurring in B. If all the variables in var(B) are locally modified in c,
then B is a locally determined condition. Otherwise, it is globally determined.
In Subsection 4.1 and 4.2, we show how to determine cycle dependencies from
these two kinds of conditions.

4.1 Locally Determined Conditions

First, we can easily see that, if a cycle is terminating on a locally determined con-
dition, then it depends on some of the cycles in the same process for an infinite
number of executions. In particular, the cycle must depend on one of its neighbors.

Proposition 1. Given a cycle c in a process p such that c is terminating on a
locally determined condition B, if c is repeated infinitely often in a run r, then
one of the neighbors of c is also repeated infinitely often in r.

Let Cp denote the set of cycles in p, and Nc denote the set of the neighbors of
c. The above discussion gives two cycle dependencies, namely (c, Cp − {c}) and
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(c, Nc). The cycle (c, Cp − {c}) is usually coarse because not necessarily all the
cycles in p contribute to the re-satisfaction of B. In the following, we propose
several methods to refine the dependency (c, Cp − {c}).

Refinement 1. In general, it is impossible to determine which cycles make a
contribution to the re-satisfaction of the condition B. We define Ec(B) as the
set of variables occurring in c such that at least one of the variables in Ec(B)
must be modified in order to make B true again. The set Ec(B) subsumes but
not necessarily equals var(B). In the example in Figure 2, an infinite number of
repetitions of the left cycle relies on an infinite number of repetitions of the right
one that resets the value of y. However, the enabling condition of the left cycle
contains only the variable x which is not modified by the right cycle. We propose
the following recursive method to compute Ec(B). A variable v is in Ec(B) if
one of the following is satisfied: a) v ∈ var(B), or b) there is an assignment v′ =
e(v) in c such that v′ ∈ Ec(B). For a set S of variables, we denote by MC p(S)
the set of cycles in p which modify at least one variable in S. We obtain a finer
dependency (c,MC p(Ec(B))−{c}) by disregarding all cycles that do not modify
any variables in Ec(B).

active proctype p()
int x = 5; int y = 5;
do
:: (x > 0) -> y--; x = y;
:: y = 5;
od

(x > 0)

y−−

x = y y = 5

Fig. 2. An example Promela model and its control flow graph

Refinement 2. The above cycle dependency may still be coarse. Consider the
control flow graph in Figure 3. Note that, whenever leaving C1 to execute C3,
C2 is always executed. So, in any run in which C1 is repeated infinitely often,
no matter whether C3 is repeated infinitely often or not, C2 is always repeated
infinitely often. Based on this observation we can refine the cycle dependency
(C1, {C2, C3}) by safely removing C3. The above simple example leads to the
following definition.

active proctype p()
int x;
do
:: x = 5;

do
:: (x > 0) -> x--;
:: break;
od;

x = 5;
do
:: (x > 0) -> x--;
:: break;
od;

od

x = 5

x = 5

(x > 0)

(x > 0)x−−

x−−

C1
C2

C3

Fig. 3. An example Promela Model and its control flow graph

Definition 3. Given a cycle c in a process p such that c is terminating on a
locally determined condition B, and a cycle c′ ∈ MC p(Ec(B)) such that c and c′

are reachable from each other, c′ is preemptive with respect to c and B if there
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exist one exit state s in c and one exit state s′ in c′ such that a) there is an
acyclic path from s to s′ that does not modify any variables in Ec(B), and b)
there is an acyclic path from s′ to s that does not modify any variables in Ec(B).
Otherwise, c′ is preempted.

In the previous example, C2 is preemptive and C3 is preempted. It is easy to
prove that, on the way from any cycle c to execute one of its preempted cycles
and then back to c, at least one preemptive cycle must be executed. We can
therefore refine the cycle dependency (c,MC p(Ec(B)) − {c}) by removing all
the preempted cycles from (MC p(Ec(B)) − {c}).

1 proc compute_cd(cycle c_0, condition B_0)
2 set[cycle] visited = {}
3 set[cycle] ccs = {}
4 queue[cycle] open = {}
5 search_for_preemptive_cycles(c_0, B_0)
6 return (c_0, ccs) // return the determined cycle dependency
7
8 proc search_for_preemptive_cycles(cycle c, condition B)
9 add c to visited

10
11 for each nc in neighbors(c)
12 if (nc not in visited) and (nc not in open)
13 if (nc modifies some variables in E_c(B))
14 then
15 add nc to visited
16 add nc to ccs
17 else
18 enqueue(open, nc)
19
20 if (open not empty)
21 c’ = dequeue(open)
22 search_for_preemptive_cycles(c’, B)

Fig. 4.An algorithm to determine cycle dependencies from locally determined conditions

Whereas Definition 3 can be used to determine whether a cycle is preempted,
Figure 4.1 gives an efficient algorithm to collect preemptive cycles during the com-
putation of cycle dependencies. In a Breadth First Search manner, the algorithm
visits each cycle at most once, and thus is linear in the number of cycles. This is
a generalization of the so-called “next door” strategy first mentioned in [12]. In
Appendix A.3 the termination and soundness of the algorithm are proved.

4.2 Globally Determined Conditions

If a cycle is terminating on a globally determined condition, then it may not
only depend on cycles in the same process, because cycles in other concurrent
processes can possibly influence the runtime value of the condition. This can
be illustrated in the example in Figure 5. The cycle in Process p is actually
the only cycle in p, and it depends on the cycle in q. We will not consider any
globally determined condition whose value is influenced by a message receiving
statement, which will be discussed in the next section.
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int y = 5;

active proctype p()
int x = 5;
do
:: (x > 0) -> y--; x = y;
od

active proctype q()
do
:: y = 5;
od

y = 5

proctype p() proctype q()

x = 5

(x > 0)

y−−

x = y

Fig. 5. An example Promela model and its control flow graphs

For a Promela model M , we denote by proc(M) the set of processes in M .
Suppose a cycle c in a process in M such that c is terminating on a globally de-
termined condition B. We can easily derive that c depends on (

⋃
q∈proc(M) MC q

(Ec(B)) − {c}). We may refine this cycle dependency by using the algorithm
in Figure 4.1 to rule out all the preempted cycles in MC p(Ec(B)) if c is in the
process p.

5 Discovering Dependencies from Message Receiving
Statements

When a cycle c contains a message receiving statement b?msg(x1, . . . , xn), it
needs an infinite number of msg messages to be repeated infinitely often. Conse-
quently, c depends on some cycles that send such messages. Let SC b,msg be the
set of the cycles sending messages msg to b. If c /∈ SC b,msg , then (c,SC b,msg) is
cycle dependency. In the remainder of the section, we assume that a cycle never
receives messages sent by itself.

A cycle that receives messages may contain a condition statement in which
the condition contains some variables used to store components of received mes-
sages. Usually, the cycle can be executed only if the received message contains
such components that make the condition true. Consider a cycle that contains
a message receiving statement s1 and a condition statement s2 such that the
condition in s2 contains variables used in s1. The following pattern for s1 and
s2 are observed in most real life Promela models: (1) all the variables in s1
are local; (2) the condition in s2 contains only variables used in s1; (3) no
variable in the condition is modified between s1 and s2 in the cycle. We call
such a condition a message determined condition. Figure 6 shows two processes
GIOPClient and GIOPAgent. In the control flow graph of GIOPClient, there is
a cycle depicted using only solid lines that contains a message determined con-
dition reply status = 4. We show in the remainder of the section how to derive
cycle dependencies from such a message determined condition.

In Figure 6, let c1 denote the solid-lined cycle in Process GIOPClient, and
c2 and c3 denote the cycles that respectively assign 4 and 5 to rs in Process
GIOPAgent. We have a dependency (c1,SC toClientL,Reply) and both c2 and c3 are
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active proctype GIOPClient()
...
do
:: toClientL?Reply(..., reply_status, ...) ->

... // replay_status is not modified here
if
:: (usedReqId[reqId] == 1) ->

if
:: (reply_status == 4) -> ...
...
fi;

...
fi;

...
od

active proctype GIOPAgent()
...
do
:: toAgent?Request(...) ->

...
if
:: (registered[objKey] == 255) ->

...
rs = 5;

:: else ->
...
rs = 4;

fi;
toClientL!Reply(..., rs, ...);

...
od

toClientL?Reply(..., reply_status, ...)

...

(usedReqId[reqId] == 1)

(reply_status == 4)

toAgent?Request(...)

...

proctype GIOPAgent()

proctype GIOPClient()

toClientL!Reply(

rs = 5else

rs = 4..., rs, ...)

(registered[objKey] == 255)

Fig. 6. An excerpt from a Promela model for CORBA GIOP [10]

in SC toClientL,Reply . However, this dependency is coarse because not necessarily
every cycle in SC toClientL,Reply may send a Replymessage to make reply status =
4 true in c1. As an example, c3 assigns 5 to rs whose value is passed to reply status
in c1 through message passing. Thus, c3 cannot make reply status = 4 true, and
it can be safely removed from SC toClientL,Reply to obtain a finer dependency.
Now the question is how to determine which cycle cannot send messages to
make reply status = 4 true.

First, we need to determine which kind of Reply messages must be received
by c1 to make reply status = 4 true. More precisely, we need to know which con-
dition must be satisfied by the components of such a message. According to the
definition of message determined conditions, reply status is not modified in c1 be-
tween the message receiving statement and (reply status == 4). However, af-
ter a message is received, reply status may still be modified before (reply status
== 4) is reached. This is because the execution of c1 can be interrupted, e.g., at
the source state of the transition corresponding to (usedReqId[reqId] == 1).
Then, when the execution of c1 is resumed, reply status may be already modified
by other cycles. However, in this concrete example, if c1 is interrupted, then be-
fore c1 is resumed the last completed interrupting cycle always receives a Reply
message. Moreover, this message contains a component whose value is passed to
reply status. The value of reply status is afterward unchanged before reaching the
message determined condition. This is because c1 and its neighbors satisfy the
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following structural property named fastened cycles: Given a cycle c that con-
tains a message receiving statement s1 and a condition statement s2, we denote
by t1 the transition corresponding to s1, by t2 the transition corresponding to s2,
and by p the path from the source state of t1 to the source state of t2. For each
neighbor c′ of c, if c′ and c contain a common state s within p, then c′ contains
also the path in c from the source state of t1 to s. The pattern in the fastened
cycles property results from nested if statements inside do loops which are a
common control structure of concurrent processes in an asynchronous reactive
system.

Proposition 2. Let c be a cycle that contains a condition statement (B) in
which the condition B is determined by messages received via the statement
b?msg(x1, . . . , xn) in c. If the fastened cycles property is satisfied by c and all of
its neighbors, then one execution of c needs a msg(d1, . . . , dn) message such that
B[xi ← di]1 is true.

Using Proposition 2, if we can determine that the execution of c requires a mes-
sage msg(d1, . . . , dn) such that B[xi ← di] is true, then we can use the following
method to determine whether a cycle c′ may not send such a message. Given a
cycle c′ that contains a message sending statement b!msg(d1, . . . , dn), if all di’s
are constant values, then we directly evaluate B[xi ← di] which is a constant
truth value. If it is false, then we can exclude c′ from SC b,msg . When some di

is a variable, we traverse backward in c′ from the source state s′ of the tran-
sition t corresponding to b!msg(d1, . . . , dn), and locate the first state s �= s′

such that s has an incoming transition outside c′ but within other cycles. If no
such s exists, then we take as s the predecessor of s′ in c′. The path p from s
to s′ is then the longest acyclic path within c that must be consecutively exe-
cuted immediately before reaching the message sending statement. We compute
the postcondition Post(p) of p by Floyd-Hoare-style forward inference starting
with the precondition true2. This assumes that all the variables initially contain
arbitrary values before p is consecutively executed. If Post(p)∧B[xi ← di] is un-
satisfiable, then c′ can be removed from SC b,msg. If the Promela model contains
only linear arithmetic expressions in assignments and conditions, then the satis-
fiability of Post(p) ∧ B[xi ← di] can be decided fully automatically using either
an automated theorem prover or a linear programming solver. In the example in
Figure 6, we illustrate how to determine that c3 cannot send a message to satisfy
reply status = 4. The longest consecutively executed path p in this example starts
from the source state of the transition corresponding to the message receiving
statement, i.e., the topmost state in the control flow graph of GIOPAgent. Then
Post(p) = (· · · ∧ (rs = 5 )). Since Post(p) ∧ (reply status = 4)[reply status ← rs ]
is false, c3 can be safely removed from (c1,SC toClientL,Reply).

1 B[xi ← di] is a boolean expression obtained from B by substituting simultaneously
each occurrence of xi with di.

2 Since the path p is acyclic, Post(p) can be computed fully automatically.
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6 The Refinement of a Livelock Freedom Test

We show how the discovery of cycle dependencies can be used to improve the
precision of a livelock freedom test that we developed [12]. We sketch this test
using the example in Figure 1.

In a Promela model we may label a set of statements as progress statements.
Let us assume the message receiving statement (Line 6) in the process client
is the only progress statement in Figure 1. A model is said to be free of livelock
if and only if at least one of the progress statements must be repeated infinitely
often in any infinite run of the model. Therefore, our example model is free
of livelock if the client always receives replies from the server infinitely often.
Moreover, we define a cycle to be a progress cycle if it contains at least one
progress statement. So, the right cycle cr of client is the only progress cycle.
We have shown in [12] that livelock freedom is undecidable for infinite state
systems.

The basic idea of our livelock freedom test in [12] is to check whether there is
any infinite run of a model in which no progress cycle is repeated infinitely often.
If no such run exists, then the model is livelock free. In our test, we first abstract
from arbitrary program code in the model and retain only the message sending
and receiving statements. Next, we abstract from message orders and denote
the message passing effect of a statement by an integer vector called an effect
vector. Each component of an effect vector corresponds to one type of messages.
A positive component represents the number of messages of the corresponding
type being sent by the statement. A negative component represents the number
of messages being received. We abstract further from the activation conditions
and dependencies of cycles. The resulting abstract system is a set of cycles with
their summary effect vectors. In our example, there are three cycles: cl with the
effect vector (1, 0), cr with (0, −1), and cs with (−1, 1).

We now give a necessary condition for the existence of a livelocked run, i.e.,
a run in which no progress cycle is repeated infinitely often, in the form of
an integer linear programming (ILP) problem. The ILP problem is shown in
Figure 7. It can be solved in polynomial time. Intuitively, any solution to this
ILP problem represents a combination of cycle effects that (1) can be repeated
forever since it does not consume any type of messages (Inequalities 1–2); and (2)
does not include any progress cycle (Inequality 3). The last inequality 4 restricts
the number of times that a cycle is repeated to be non-negative. If the ILP
problem has no solutions, then such cycle combination does not exist, which
proves livelock freedom for the model. Unfortunately, the ILP problem has a
solution: x1 = 1, x2 = x3 = 0. In this case, we do not know whether the model is
livelock free or not because the abstraction used in our test is over-approximating
and may introduce spurious behavior.

The above obtained ILP solution represents a counterexample suggesting the
scenario that only the cycle cl is repeated infinitely often in some runs. How-
ever, by the help of our cycle dependency discovery, we can see that the cycle
cl depends on cr. Since cr is not included in the counterexample, the counterex-
ample is spurious. Furthermore, we can use the cycle dependency to refine the
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xi ≥ 0 (4)

Fig. 7. The livelock freedom determination ILP problem for the model in Figure 1

abstraction by adding the following inequality to the ILP problem in Figure 7:
x1 ≤ 3x2. Intuitively, the new constraint says that the cycle cr must be executed
at least once for every 3 times that cl is repeated. The determination of this
constraint also relies on the estimation of the maximal iteration counts of the
cycle cl, which we discussed in [14].

The quality of the above described refinement procedure largely relies on the ac-
curacy of the cycle dependency discovery techniques. The smaller a detected cycle
dependency is, the more spurious behavior can be excluded through refinement.

7 Experimental Results

We have implemented different strategies to detect both local and global cycle
dependencies for the models3 listed in Table 1. The experimental results were
obtained on a Pentium IV 1.60GHz machine with 1GB memory.

Table 1. Test models

Model # cycles # detected cycle dependencies

i-Protocol 22 30
MVCC 30 51
GIOP 66 203
SMCS 171 541

We detected three types of dependencies: (1) dependencies on neighbors (see
Corollary 1); (2) dependencies on cycles that may render the considered con-
dition to be re-satisfied; (3) dependencies caused by message receiving state-
ments. Table 1 lists the total number of dependencies of all three types that
were detected for each model. Different strategies are used to over-approximate
dependencies of Type 2 and 3, and their performances are compared as explained
below.
3 MVCC [8] models the Model View and Concurrent Control protocol used in the

Clock toolkit for the development of groupware applications; i-Protocol [6] models a
sliding-window protocol for Unix-to-Unix-Copy; GIOP [10] models inter-ORB mes-
sage exchange and server object migration in the CORBA architecture; SMCS [17]
models the T.122 and T.125 multi-point communication service protocol.
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Table 2. The comparison of different strategies to detect dependencies of Type 2. By
the size of a cycle dependency (c, S), we refer to the size of the set S. For each model and
each strategy, we list the sum of the sizes of all the detected dependencies of this type.

summary size of dependencies % reduction
w.r.t. MC

runtime (secs.)

Model MC ND PC ND PC MC ND PC
i-Protocol 63 63 43 0 31.7 13.02 13.27 13.66
MVCC 60 59 41 1.7 31.7 3.55 3.59 3.52
GIOP 837 788 714 5.9 14.7 29.25 30.12 33.17
SMCS 5200 5200 3424 0 34.2 136.63 143.75 175.05

Table 7 compares three different strategies for the detection of dependencies
of type 2: MC is the coarsest one that includes a cycle in the dependency as
long as it may influence at least one variable in the considered condition; ND
is the next-door strategy; PC is the finest one that collects only preemptive
cycles for computing dependencies. We observe that ND leads to only a minor
improvement of the accuracy of the detected dependencies. PC reduces the sizes
of dependencies much more effectively at the expense of a modest or even no
runtime penalty (see the results for MVCC4). In particular, PC reduces the sizes
of dependencies by more than one third for the model SMCS while ND does not
reduce the cycle number at all.

Table 3. The comparison of different strategies to detect global dependencies caused
by message receiving statements

summary size of dependencies % reduction

w.r.t. SC

runtime (secs.)

Model SC FC FC SC FC
i-Protocol 62 33 46.8 0.01 0.05
MVCC 35 35 0 0.01 0.66
GIOP 274 242 11.7 0.10 10.78
SMCS 410 338 17.5 1.37 45.17

Table 3 shows two strategies to detect global dependencies caused by message
receiving statements: SC is coarser and includes any cycle in the dependency as
long as it may send the same type of messages as received by the considered
receiving statement. FC checks the fastened cycles property in order to exclude
cycles that cannot contribute a desired message. We observe that FC can reduce
the sizes of dependencies quite considerably at the expense of a moderate to
significant runtime penalty. The fact that FC did not reduce the dependency
sizes for MVCC is expected because few variables are used in the model to store
components of incoming messages. Moreover, those component storing variables
are not used to control the behavior of the model, i.e., there are no message
determined conditions. The extra runtime required by FC on MVCC was spent
4 The reason is that ND and PC sometimes check only a small number of cycles for

computing dependencies for one cycle while MC has to check all the cycles in the
same process.
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on checking the existence of message determined conditions. If we know a priori
that no such conditions exist in a model, which can be achieved by a manual
scan of the Promela code, then FC is unnecessary.

To illustrate the benefit of our analysis we applied our approach to the coun-
terexample refinement of our livelock freedom analysis for Promela models [12].
We have mentioned that, by obtaining smaller and more dependencies, we stand
a better chance to determine spuriousness for the counterexample. The previous
version of our prototype livelock freedom checker aLive used the ND strategy
to discover local dependencies and was not able to detect global dependencies.
In [12] we reported that the local cycle dependency detection helped to remove
7 counterexamples for a model of the Group Address Registration protocol for
which livelock freedom was successfully proved. For the GIOP model, 8 coun-
terexamples were found and aLive failed to prove spuriousness for one of them.
The spuriousness of this counterexample is caused by abstracting away a global
dependency. After we employed the FC strategy proposed in this paper in aLive,
the one remaining counterexample in GIOP was determined to be spurious and
subsequently excluded from the abstraction. The same was observed during the
checking of the i-Protocol model for which 4 more spurious counterexamples
were discovered due to the detection of global dependencies.

We also performed experiments in which we used the cycle dependency analy-
sis in the spuriousness determination of counterexamples found during our buffer
boundedness analysis [13]. The increase in precision that we achieved lies within
the range of increase that we obtained for the livelock freedom analysis.

8 Conclusion

The first contribution of our work is a formalization of the concept of control
flow cycle dependencies. The second contribution is that we presented several
incomplete but efficient static analysis methods for the detection of both local
and global cycle dependencies for reactive systems of concurrent processes. Fur-
thermore, we conducted experiments that show the precision of this analysis
when applied to a set of models of real-life systems. We also show that the pre-
cision of our approach compared to naive cycle dependency detection techniques
improves the precision of our livelock freedom and buffer boundedness analyses
since more spurious counterexamples can be detected.

Future work will include improving our analysis by incorporating data flow
analysis. As an example, consider the computation of Ec(B) as the set of vari-
ables that may influence the run-time values of the variables in B along the cycle
c (Sec. 4.1). If a variable in Ec(B) does not occur in B, then it must appear in the
right hand side of an assignment statement that directly or indirectly changes
the value of some variable v in B. However, the effect of such an assignment
may be killed later by an assignment to v before the condition statement (B)
is reached. Therefore, the use of reachable definition analysis may improve the
precision of Ec(B). We will also consider broadening the approach to a wider
range of programming and modeling languages. Finally, we see a potential for
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the application of cycle dependency analyses to other application areas, such as
the prediction of temporal conflicts and spatial localities of code blocks for the
improvement of instruction cache hit rates [11].
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21. Pelánek, R.: BEEM: Benchmarks for explicit model checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007)

22. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004)

23. Ranganath, V.P., Amtoft, T., Banerjee, A., Hatcliff, J., Dwyer, M.B.: A new foun-
dation for control dependence and slicing for modern program structures. ACM
Trans. Program. Lang. Syst. 29(5) (2007)

24. Siegel, S.F., Avrunin, G.S.: Improving the precision of INCA by eliminating solu-
tions with spurious cycles. IEEE Trans. Software Eng. 28(2), 115–128 (2002)

25. Tip, F.: A survey of program slicing techniques. Journal of Programming Lan-
guages 3(3), 121–189 (1995)

A Appendix

A.1 The Proof of Theorem 1

We prove the theorem by a reduction from the following undecidable problem [2]:
the executability of a message reception in a system of communicating finite state
machines (CFSM)5.

Instance: A CFSM M and a local state s of M having an outgoing transition t
labeled by the receive action ‘?a’

Question: Does there exist a run of M such that the message reception ‘?a’ is
executed at s?

We construct a CFSM system M ′ from M by (1) introducing a new state
s′ in the same state machine as s is; (2) adding at s′ a self-transition labeled
with ‘!b’ where b is a newly introduced type of message; (3) changing the target
state of the transition t to the newly introduced state s′; and finally (4) adding
a new state machine consisting of a single state s′′ and a self-transition at s′′.
5 The proof is actually for the undecidability of the same problem for communicating

finite state machines (CFSM). However, Promela models with unbounded buffers
can simulate CFSM systems. Thus, the undecidability result also holds for Promela
models.
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Moreover, let c be the self-loop at s′ and S be the singleton cycle set consisting
of the self-loop at s′′.

We prove that ‘?a’ can be executed at s in M if and only if c does not depends
on S in M ′.

For the “if” part, assume that c does not depends on S. Then, there exists
an infinite run of M ′ in which c is executed infinitely often while the self-loop
at s′′ is not. From the construction of M ′, c can be executed only if ‘?a’ can be
executed at s in M ′, which means that ‘?a’ can be executed also in M .

For the “only if” part, assume that ‘?a’ can be executed at s in M . Then,
‘?a’ can be also executed in M ′. After ‘?a’ is executed, c can be repeated alone
forever, which means c does not depend on any other cycles for an infinite number
of executions. ��

A.2 The Proof of Proposition 1

If c is repeated an infinite number of times, then some other cycle c′ in p must
be repeated also infinitely often. On every path from a state in c to a state in c′,
there must be a transition t from an exit state of c such that t is not contained
in c. There are only finitely many such transitions, so one of them is taken an
infinite number of times and it belongs to at least one of the neighbors of c. ��

A.3 The Termination and Soundness of the Algorithm in Figure 4.1

Proposition 3 (Termination). The algorithm in Figure 4.1 always terminates.

Proof. It is easy to see that no cycle can be added to visited more than once.
Hence, each call to search for preemptive cycles results in a new cycle being
added to visited (Line 9). Note that our algorithm never removes any cycle
from visited. Since there are only finitely many cycles, the algorithm must
terminate. ��

Proposition 4 (Soundness). Given as an input a cycle c in process p such that
c is terminating on a locally determined condition B, the algorithm in Figure 4.1
returns a cycle dependency (c, S) such that a cycle c′ ∈ MC p(Ec(B)) is preemp-
tive if and only if c′ ∈ S.

Proof. We assign a natural number level (d) to each cycle d that is added to
visited as follow: (1) level (c) = 0; (2) if c1 is enqueued (Line 18) or added to
ccs (Line 16) inside the call to search for preemptive cycles(c2, B) and
level(c2) = n, then level (c1) = n + 1. In the second case, we say that c2 is the
parent of c1 and c1 is a child of c2. Then, we can build a parent-child tree (PCT).

For the “if” part, we prove that if c′ ∈ S then it is preemptive. It is easy to
see that, in the path from the root c to c′ in the PCT, no cycle except c and
c′ modifies any variable in Ec(B). From this path, we can easily construct an
acyclic path θ from an exit state t in c to an exit state t′ in c′, and an acyclic
path θ′ from t′ to t. θ and θ′ apparently do not modify any variable in Ec(B).

For the “only if” part, assume that c′ is preemptive. Then, there is an exit
state t in c, an exit state t′ in c′, an acyclic path θ from t to t′, and an acyclic
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path θ′ from t′ to t such that θ and θ′ do not modify any variable in Ec(B).
The path < θ, θ′ > can be decomposed into a set of cycles, from which we can
construct a sequence of pairwise distinct cycles c1, . . . , cn such that (1) c1 is a
neighbor of c, (2) cn is a neighbor of c′, and (3) each ci and ci+1 are neighbors.
It is easy to see no cycle in such a sequence modifies any variable in Ec(B).
Let SEQ be the set of shortest sequences of cycles as constructed in this way.
Assume that the sequences in SEQ are of length n. For each sequence in SEQ, we
add c to its head and attach c′ to the end. We prove that there is one sequence
seq ∈ SEQ that is a path in the PCT, which implies that c′ is added to ccs. The
proof is by showing that, for any k ≤ n, there is a sequence seq ∈ SEQ such
that its prefix of length i is a path in the PCT (*), by induction on the length i
of prefixes of sequences in SEQ.

Induction base: The prefix of length 1 of any sequence in SEQ is c, which is a
path in the PCT.

Induction step: Assume that (*) holds for k. Let P be the set of sequences
in SEQ such that their prefixes of length k are paths in the PCT. Let Ck be
the set of cycles {d | d is the k-th element in a sequence in P}, and Ck+1 be
{d | d is the (k+1)-th element in a sequence in P}. By contradiction, we assume
that there is no sequence in P such that its prefix of length (k + 1) is a path in
the PCT. Then, inside the call to search for preemptive cycles(ck, B) for
each ck ∈ Ck, none of the neighbors of ck+1 in Ck+1 is enqueued or added to
visited. This happens only when ck+1 is already in open or in visited. Let p
be the parent of ck+1. So, p /∈ P . We have either that (1) level (p) = k, or that
(2) level (p) < k. When level (p) = k, the path from c to p must be the prefix
of length k of some sequence in SEQ, which means that p ∈ P . This leads to a
contradiction. When level (p) < k, we construct a sequence of cycles from any
sequence in P whose (k +1)-th element is ck+1, by replacing the prefix of length
k by p. The new sequence is shorter than the sequences in SEQ, which contradicts
that SEQ contains the shortest sequences of pairwise distinct cycles connecting
c and c′. ��

A.4 The Proof of Proposition 2

Lemma 1. Using the notation in the definition of the fastened cycles property
in Section 5, the following is satisfied: For any path p1 that ends at an exit state
s within p, the path p2 in c from the source state of t1 to s is consecutively
executed6 in the end of p1.

Proof. We suppose that there are q exit states in p: es1, . . . , esq. We prove the
lemma by induction on the index k of esk.

Induction base: es1 is the source state of t1. The path from es1 to es1 is an
empty path which is always consecutively executed.
6 Given two paths p1 and p2, we say that p2 is executed in p1 if p2 is a subsequence

of p1. If p2 is a consecutive subsequence of p1, then we say that it is consecutively
executed in p1. In particular, an empty path is always consecutively executed.
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Induction step: Assume the lemma holds for esm where m < k. Let p′ denote
the path from the source state of t1 to esk. Suppose that esj is the last exit
state at which the execution of p′ is interrupted. We have that j < k. From the
induction assumption, immediately before the execution p′ is resumed at esj, the
path from the source state of t1 to esj is consecutively executed. Furthermore,
after the execution of p′ is resumed, the remaining part of p′ is also consecutively
executed. So, p′ is consecutively executed. ��

In the following, we prove Proposition 2 using the above lemma.

Proof. We denote by s1 the statement b?msg(x1, . . . , xn), by s2 the statement
(B), by t1 the transition corresponding to s1, by t2 the transition corresponding
to s2, and by p the path from the source state of t1 to the source state of t2.

We denote by sl the exit state within p at which the execution of c is inter-
rupted at the last time in a run. We denote by p′ the path from the source state
of t1 to sl in c, and by p′′ the path from sl to the source state of t2 in c . So,
p = < p′, p′′ >. Following Lemma 1, before the execution of c is resumed, p′ is
consecutively executed. Because sl is the last state at which c is exited, p′′ is
also consecutively executed after c is re-entered. So, p is consecutively executed
before the condition statement s2 is reached. In this consecutive execution of p
a message msg(d1, . . . , dn) is received and each variable xi ∈ var(B) is assigned
with di. After p is executed, the execution of c can continue if and only if B
is true. Since any variable xi ∈ var(B) is not modified in p after receiving the
message, we have that B[xi ← di] is true. ��
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