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Abstract. We apply the theory of asynchronous automata to the syn-
thesis problem of closed distributed systems. We use safe asynchronous
automata as implementation model, and characterise the languages they
accept. We analyze the complexity of the synthesis problem in our fra-
mework. Theorems by Zielonka and Morin are then used to develop and
implement a synthesis algorithm. Finally, we apply the developed algo-
rithms to the classic problem of mutual exclusion.

1 Introduction

We address the problem of automatically synthesising a finite-state, closed distri-
buted system from a given specification. Seminal papers in this area are [EC82,
MW84], where synthesis algorithms from temporal logic specifications are de-
veloped. The algorithms are based on tableau procedures for the satisfiability
problem of CTL and LTL.

These approaches suffer from the limitation that the synthesis algorithms
produce a sequential process P , and not a distributed implementation, i.e., a
tuple (P1, . . . , Pn) of communicating processes. The solution suggested in these
works is to first synthesise the sequential solution, and then decompose it. Howe-
ver, since distribution aspects like concurrency and independency of events are
not part of the CTL or LTL specification (and cannot be, since they are not bisi-
mulation invariant), the solution may be impossible to distribute while keeping
the intended concurrency. (This is in fact what happens with the solutions of
[EC82,MW84] to the mutual exclusion problem)

A better approach to the problem consists in formally specifying not only
the properties the system should satisfy, but also its architecture (how many
components, and how they communicate). This approach was studied in [PR89]
for open systems, in which the environment is an adversary of the system com-
ponents, and the question is whether the system has a strategy that guarantees
the specification against all possible behaviours of the environment. The realiza-
tion problem (given the properties and the architecture, decide if there exists an
implementation) was shown to be undecidable for arbitrary architectures, and
decidable but non-elementary for hierarchical architectures vs. LTL specificati-
ons. Recent work [KV01] extends the decidability result (and the upper bound)
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28 A. Ştefănescu, J. Esparza, and A. Muscholl

to CTL∗ specifications and linear architectures. To the best of our knowledge the
synthesis procedures have not been implemented or tested on small examples.

In this paper we study the realization problem for the simpler case of closed
systems, the original class of systems considered in [EC82,MW84]. This pro-
blem has been studied with unlabelled Petri nets (see e.g. [BD98]) and product
transition systems (see [CMT99] and the references therein) as notions of imple-
mentation. In this paper, we attack the problem using asynchronous automata
[Zie87,DR95]. Asynchronous automata can be seen as a tuple of concurrent pro-
cesses communicating in a certain way (or as 1-safe labelled Petri nets). In our
approach, a specification consists of two parts: a regular language L over an
alphabet Σ of actions, containing all the finite executions that the synthesised
system should be able to execute, and a tuple (Σ1, . . . , Σn) of local alphabets
indicating the actions in which the processes to be synthesised are involved; an
action can be executed only if all processes involved in it are willing to execute
it. The synthesis problem consists of producing a so-called safe asynchronous au-
tomaton whose associated processes have (Σ1, . . . , Σn) as alphabets, and whose
language is included in L (together with some other conditions to remove trivial
solutions). The main advantage of our approach with respect to those of [BD98,
CMT99] is its generality: Unlabelled Petri nets and product transition systems
can be seen as strict subclasses of safe asynchronous automata.

The first two contributions of the paper are of theoretical nature. The first
one is a refinement of Zielonka’s theorem [Zie87], a celebrated central result of
the theory of Mazurkiewicz traces. The refinement characterises the languages
recognised by safe asynchronous automata, which we call implementable langu-
ages. (This result was also announced in [Muk02] without proof.) This result
allows to divide the synthesis problem into two parts: (1) given a specification
L, (Σ1, . . . , Σn), decide if there exists an implementable language L′ ⊆ L, and
(2) given a such L′, obtain a safe asynchronous automaton with L′ as language.
In the second contribution, we find that part (1) is undecidable, therefore we re-
strict our attention to an NP-complete subclass of solutions for which reasonable
heuristics can be developed.

The third and main contribution of the paper is the development of heuri-
stics to solve (1) and (2) in practice, their application to the mutual exclusion
problem, and the evaluation of the results. The heuristic for (2) uses a result by
Morin [Mor98] to speed up the synthesis procedure given by Zielonka in [Zie87].
Our heuristics synthesise two (maybe not ‘elegant’ but) new and far more reali-
stic shared-variables solutions to the mutex problem than those of [EC82,MW84]
(the results of [PR89], being for open systems and very generally applicable, did
not provide any better automatically generated solution to the mutual exclusion
problem). We make good use of the larger expressivity of asynchronous auto-
mata compared to unlabelled Petri nets and product transition systems: The
first solution cannot be synthesised using Petri nets, and the second – the most
realistic – cannot be synthesised using Petri nets or product transition systems.

The paper is structured as follows. Section 2 introduces asynchronous au-
tomata and Zielonka’s theorem. In Sect. 3 we present the characterisation of
implementable languages. Section 4 describes the synthesis problem together
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with heuristics for the construction of a solution and discusses complexity is-
sues. Section 5 shows the synthesis procedure at work on the mutual exclusion
problem. All the proofs can be found in [SEM03].

2 Preliminaries

We start with some definitions and notations about automata and regular lan-
guages. A finite automaton is a five tuple A = (Q, Σ, δ, I, F ) where Q is a finite
set of states, Σ is a finite alphabet of actions, I, F ⊆ Q are sets of initial and
final states, respectively, and δ ⊆ Q × Σ × Q is the transition relation. We write
q

a→ q′ to denote (q, a, q′) ∈ δ. The language recognised by A is defined as usual.
A language is regular if it is recognised by some finite automaton. Given a langu-
age L, its prefix closure is the language containing all words of L together with
all their prefixes. A language L is prefix-closed if it is equal to its prefix closure.
Given two languages L1, L2 ⊆ Σ∗, we define their shuffle as shuffle(L1, L2) :=
{u1v1u2v2 . . . ukvk | k ≥ 1, u1 . . . uk ∈ L1, v1 . . . vk ∈ L2 and ui, vi ∈ Σ∗}.

We recall that regular languages are closed under boolean operations, that
the prefix-closure of a regular language is regular, and that the shuffle of two
regular languages is regular.

2.1 Asynchronous Automata

Let Σ be a nonempty, finite alphabet of actions, and let Proc be a nonempty,
finite set of process labels. A distribution of Σ over Proc is a function ∆:Proc →
2Σ\∅. Intuitively, ∆ assigns to each process the set of actions it is involved in,
which are the actions that cannot be executed without the process participating
in it. It is often more convenient to represent a distribution by the domain fun-
ction dom : Σ → 2Proc\∅ that assigns to each action the processes that execute
it. We call the pair (Σ, dom) a distributed alphabet. A distribution induces an in-
dependence relation ‖: Σ×Σ as follows: ∀a, b ∈ Σ : a‖b ⇔ dom(a)∩dom(b) = ∅.
I.e., two actions are independent if no process is involved in both. The intuition
is that independent actions may occur concurrently.

An asynchronous automaton over a distributed alphabet is a finite automaton
that can be distributed into communicating local automata. The states of the
automaton are tuples of local states of the local automata.

Definition 1. An asynchronous automaton AA over a distributed alphabet
(Σ, dom) is a finite automaton (Q, Σ, δ, I, F ) such that there exist

– a family of sets of local states (Qk)k∈Proc , and
– a relation δa ⊆ ∏

k∈dom(a) Qk × ∏
k∈dom(a) Qk for each action a ∈ Σ

satisfying the following properties:

– Q ⊆ ∏
k∈Proc Qk, with I, F ⊆ Q initial and final states, and
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q   , q’0 0

1q   , q’0 0q   , q’1

q   , q’1 1

ba

b a

Σ = {a, b}, Proc = {1, 2}
dom(a) = {1}, dom(b) = {2}
Q1 = {q0, q1}, Q2 = {q′

0, q
′
1}

δa = {(q0, q1)}, δb = {(q′
0, q

′
1)}

I = {(q0, q
′
0)}, F = {(q0, q

′
0), (q1, q

′
0), (q0, q

′
1)}

Fig. 1. An asynchronous automaton together with its formal description

– (q, a, q′) ∈ δ ⇔
{∀k 
∈ dom(a) : qk = q′

k(
(qk)k∈dom(a), (q′

k)k∈dom(a)
) ∈ δa

where qk denotes the k-th component of q, and (qk)k∈dom(a) denotes the
projection of q onto dom(a).

The language recognised by an asynchronous automaton is the language it re-
cognises as a finite automaton. If all δa’s are functions and I contains only one
element, then AA is called deterministic.

Figure 1 shows an asynchronous automaton. Intuitively, each set Qk repre-
sents the set of states of a sequential component. Whether there is an a-transition
between two states depends only on the projections of the states onto dom(a),
the local states of the other components are irrelevant; moreover the execution of
a only changes the local state of the processes in dom(a). In particular, if there
is an a-transition between two global states q1, q2, then there must also be a-
transitions between any states q′

1, q
′
2 such that the projections of q1, q

′
1 and q2, q

′
2

on dom(a) coincide. It is easy to see that, as a consequence, every asynchronous
automaton satisfies the independent and forward diamond rules:
– ID : q1

a→ q2
b→ q4 ∧ a‖b ⇒ ∃q3 : q1

b→ q3
a→ q4

– FD : q1
a→ q2 ∧ q1

b→ q3 ∧ a‖b ⇒ ∃q4 : q2
b→ q4 ∧ q3

a→ q4.

Finally, observe that the accepting conditions of asynchronous automata are
global: We need to know the local states of all the processes in order to determine
if the tuple of local states is a final state.

2.2 Zielonka’s Theorem

Zielonka’s theorem characterises the languages accepted by asynchronous auto-
mata. Given a distributed alphabet (Σ, dom), we say that L ⊆ Σ∗ is a trace
language if L is closed under the independence relation ‖ associated to dom:

∀a, b ∈ Σ and ∀w, w′ ∈ Σ∗ : wabw′ ∈ L ∧ a‖b ⇒ wbaw′ ∈ L.

Theorem 1. [Zie87] Let (Σ, dom) be a distributed alphabet, and let L ⊆ Σ∗. L
is recognised by a finite asynchronous automaton with distribution dom if and
only if it is a regular trace language. Moreover, if L is recognised by an asyn-
chronous automaton, then it is also recognised by a deterministic asynchronous
automaton.
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The proof of the theorem is constructive. Zielonka defines an effectively com-
putable equivalence relation ≈Z⊆ Σ∗ × Σ∗ of finite index. The definition of ≈Z

can be found in [Zie87]. Now, let TL be the infinite automaton having L as set of
states, and w

a→ wa as transitions. The asynchronous automaton of Theorem 1
is the quotient of TL under ≈Z . The size of the automaton is single exponential
in the size of the minimal deterministic automaton recognising L, and double
exponential in the size of Proc.

The following shows that in order to decide if a language is a regular trace
language, it suffices to compute the minimal automaton recognising it, and check
if it satisfies ID.

Proposition 1. Let (Σ, dom) be a distributed alphabet, and let L ⊆ Σ∗ regular.
The following conditions are equivalent:
1. L is a regular trace language;
2. the minimal deterministic finite automaton recognising L satisfies ID.

3 Implementable Specifications

As mentioned in the introduction, we use regular languages as specification of
the set of global behaviours of a distributed system, where a behaviour is a finite
sequence of actions. In this setting, asynchronous automata are not a realistic
implementation model. The reason is best explained by means of an example.
Let Σ = {a, b} and dom(a) = {1}, dom(b) = {2}, and consider the language
L = {ε, a, b}. Intuitively, (L, dom) cannot be implemented: Since L contains
both a and b, and a and b are executed independently of each other, nothing can
prevent an implementation from executing ab and ba as well, which do not belong
to L. However, the asynchronous automaton of Fig. 1 recognises L. The reason
is that we can choose the global final states as {(0, 0), (1, 0), (0, 1)}, excluding
(1, 1). (Notice that if we remove (1, 1) from the set of states the automaton is no
longer asynchronous, because it does not satisfy FD.) In our context, in which
runs of the automaton should represent behaviours of a distributed system, this
is not acceptable: We cannot declare a posteriori that a sequence of actions we
have observed is not a behaviour because the state it reaches as non-final.

This example shows that we have to restrict our attention to asynchronous
automata in which all states reachable from the initial states are final. We call
such automata safe1.

As we mentioned in the introduction, the synthesis of closed distributed sy-
stems has been studied before using unlabelled Petri nets [BD98] and product
transition systems [Mor98,CMT99] as implementation models. Both models can
be seen as subclasses of safe asynchronous automata in which, for each action
a, the relation δa satisfies an additional condition. In the case of Petri nets, δa

1 Safe (asynchronous) automata were studied by Zielonka in [Zie89]. Safe there means
something weaker: All reachable states are co-reachable (i.e. there is a path from
that state to a final one). However, the difference between the two definitions of safe
vanishes when the recognised language is prefix-closed.
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must contain at most one element. In the case of product transition systems, δa

must have a product form: There must be a family of relations δk
a ⊆ Qk × Qk

such that δa =
∏

k∈Proc δk
a .

In the rest of this section we obtain the equivalent of Theorem 1 and Propo-
sition 1 for safe asynchronous automata.

Definition 2. A regular trace language L ⊆ Σ∗ is called implementable if it
satisfies:
– prefix-closedness: ∀w, w′, w′′ ∈ Σ∗ : w = w′w′′ ∈ L ⇒ w′ ∈ L
– safe-branching2: ∀w ∈ Σ∗ : wa ∈ L ∧ wb ∈ L ∧ a‖b ⇒ wab ∈ L.

Theorem 2. Let (Σ, dom) be a distributed alphabet, and let L ⊆ Σ∗. L is re-
cognised by a finite safe asynchronous automaton with distribution dom if and
only if it is an implementable trace language. Moreover, if L is recognised by a
safe asynchronous automaton, then it is also recognised by a safe deterministic
asynchronous automaton.

A proof is given in [SEM03] and a constructive one follows from Proposition 3.

Proposition 2. Let (Σ, dom) be a distributed alphabet, and let L ⊆ Σ∗ regular.
The following conditions are equivalent:
1. L is an implementable language;
2. the minimal deterministic finite automaton recognising L is safe and satisfies

ID and FD.

This result provides an inexpensive test to check if a specification (L, dom)
is implementable: Compute the minimal automaton recognising L and check if
it satisfies ID and FD and if all its states are final. These checks have linear
time complexity in the size of the minimal automaton and in the size of the
independence relation generated by dom.

Remark 1. Testing whether a specification is implementable is PSPACE-com-
plete, when the input is a regular expression or a non-deterministic automaton
(it can be easily shown that both checking ID and FD are PSPACE-complete).

It is not difficult to show that implementable languages are a proper superset
of the Petri net languages and the languages of product transition systems (see
[Zie87]). As we will see in Sect. 5.1, this is the fact that will allow us to derive
implementations in our case studies.

4 The Synthesis Problem

In our setting, the synthesis problem is: Given a distributed alphabet (Σ, dom)
and a regular language LSpec, represented as a deterministic finite automa-
ton ASpec, is there a safe asynchronous automaton AA such that L(AA) ⊆
2 In [Maz87] the property of safe-branching is called properness.
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L(ASpec)? In addition, we require that all the actions in Σ appear in L(AA),
because we are not interested in trivial solutions like L(AA) = ∅ or partial solu-
tions in which only some of the processes are executing actions. By definition, for
a given language L, let Σ(L) := {a ∈ Σ | ∃u, v ∈ Σ∗ with uav ∈ L} denote the
actions appearing in L. Then, the set of actions appearing in an (asynchronous)
automaton A is just Σ(A) := Σ(L(A)). We are now able to formulate:

Problem 1. (Synthesis problem) Given a distributed alphabet (Σ, dom) and a
deterministic finite automaton ASpec such that Σ(ASpec) = Σ, is there a safe
asynchronous automaton AA such that L(AA) ⊆ L(ASpec) and Σ(AA) = Σ?

Theorem 3. The synthesis problem is undecidable.

Because of the undecidability of synthesis problem stated in Theorem 3, we
attack a more modest but ‘only’ NP-complete problem, for which, as we can
see, we can develop reasonable heuristics. This requires to introduce the notion
of a subautomaton. We say that A′ = (Q′, Σ′, δ′, I ′, F ′) is a subautomaton of
A = (Q, Σ, δ, I, F ) if Q′ ⊆ Q, Σ′ ⊆ Σ, I ′ ⊆ I, F ′ ⊆ F and δ′ ⊆ δ.

In the subautomata synthesis problem we search for the language of AA only
among the languages of the subautomata of ASpec. More precisely, we examine
the languages of the subautomata, which are obviously included in L(ASpec),
and determine if some of them is the language of an asynchronous automaton.
Since the languages of safe asynchronous automata are those implementable,
what we in fact do is to consider the following problem:

Problem 2. (Subautomata synthesis) Given a distributed alphabet (Σ, dom) and
a deterministic finite automaton ASpec such that Σ(ASpec) = Σ, is there a safe
subautomaton A′ of ASpec with Σ(A′) = Σ satisfying ID and FD?

A positive solution to an instance of this problem implies a positive solution
to the same instance of the synthesis problem.

Theorem 4. The subautomata synthesis problem is NP-complete.

Let us now summarize our approach:

1. Choose the set of actions Σ of the system and a distribution ∆.
2. Describe the ‘good’ behaviours of the system as a regular language LSpec.

Usually, we give LSpec as a base language (e.g. a shuffle of local behaviours),
from which we filter out undesired behaviours (e.g. behaviours that lead to
two processes in a critical section).

3. Construct A (usually, the minimal deterministic finite automaton) satisfying
L(A) = LSpec.

4. Find a safe subautomaton A′ of A with Σ(A′) = Σ satisfying ID and FD.
(see Sect. 4.1)

5. Apply Theorem 2 to obtain a safe asynchronous automaton AA satisfying
L(AA) = L(A′). 3 (see Sect. 4.2)

3 Note that we can apply Theorem 2, because the language of a safe automaton satis-
fying ID and FD is implementable.
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4.1 Constructing a Subautomaton

Given an automaton A, finding a safe subautomaton A′ satisfying Σ(A′) = Σ,
ID, and FD is NP-complete, so in the worst case this is exponentially expensive.
In our experiments, we found two natural heuristics helpful in this problem:
1. [destructive] Starting with the initial automaton A, we remove states and

transitions that prevent the properties of safety, ID and FD to hold. So, if
we have non-final states, we remove them; if we have a conflict w.r.t. FD
(e.g., ∃q1

a→ q2 and ∃q1
b→ q3 with a‖b, but there exists no state q4 such that

∃q2
b→ q4 and ∃q3

a→ q4), we remove one of the transition involved in the
conflict (e.g., removing q1

b→ q3 will solve the conflict); something similar for
ID. In the process of removal we want to preserve Σ(A′) = Σ.

2. [constructive] Starting with the empty subautomaton, we add states and
transitions until we find a safe subautomaton A′ satisfying ID and FD. We
apply a breadth-first traversal together with a ’greedy strategy’ which selects
transitions labelled by new action names and we do not add transitions
violating the ID and FD rules and we do not add non-final states.

In both of the above strategies, we stop when we find a subautomaton sa-
tisfying our properties. Therefore, in general, the first heuristic will produce a
larger solution than the second one. Larger solutions represent more behaviours,
so better implementations for our synthesis problem. Unfortunately, this large
subautomaton will serve as an input for Zielonka’s procedure and this may blow-
up the state space of the solution. That is why the second heuristic is usually
preferred and the experimental results in Sect. 5.2 witness this fact.

4.2 Constructing an Asynchronous Automaton

The proof of Zielonka’s theorem provides an algorithm to automatically derive
an asynchronous automaton from an implementable language L (obtained as in
the previous subsection). We start by giving here a version of the algorithm. The
version is tailored so that we can easily add a heuristic that we describe in the
second half of the section. Loosely speaking, the algorithm proceeds by unfol-
ding the minimal deterministic automaton recognising L until an asynchronous
automaton is obtained.

Data structure The algorithm maintains a deterministic reachable automaton
A in which all states are final. The transitions of A are coloured green, red, or
black. The algorithm keeps the following invariants:
1. The automaton A is deterministic and recognises L.
2. Green transitions form a directed spanning-tree of A, i.e., a directed tree

with the initial state q0 as root and containing all states of A.
3. Let W (q) be the unique word w such that there is a path q0

w→ q in the
spanning-tree. For any q 
= q′ we have W (q) 
≈Z W (q′). (Notice that if a
transition q

a→ q′ is green, then W (q) · a = W (q′).)
4. A transition q

a→ q′ is red if W (q) · a 
≈Z W (q′).
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5. All other transitions are black.

Initially, A is the minimal deterministic finite automaton A0 = (Q0, Σ, δ0, q0, Q0)
recognising the implementable language L. The set of green transitions can be
computed by means of well-known algorithms. The other colours are computed
to satisfy the invariants.

Algorithm If the current automaton has no red transitions, then the algorithm
stops. Otherwise, it chooses a red transition q

a→ q′, and proceeds as follows:
a. Deletes the transition q

a→ q′.
b. If there is a state q′′ such that W (q) · a ≈Z W (q′′) then the algorithm adds

a black transition q
a→ q′′.

c. Otherwise, the algorithm
c1. creates a new (final) state r,
c2. adds a new green transition q

a→ r (and so W (r) := W (q) · a), and
c3. for every transition q′ b→ q′′, adds a new transition r

b→ s with s :=
δ0(q0, W (r) · b). The new transition is coloured red if W (r) · b 
≈Z W (s)
and black otherwise.

Proposition 3. The algorithm described above always terminates and its output
is a safe deterministic finite asynchronous automaton recognising the implemen-
table language L.

Unfortunately, as we will see later in one of our case studies, the algorithm can
produce automata with many more states than necessary. We have implemented
a heuristic that allows to ‘stop early’ if the automaton synthesised so far happens
to already be a solution, and otherwise guides the algorithm in the choice of the
next red transition.

For this, we need a test that, given a distributed alphabet (Σ, dom) and an
automaton A, checks if A is an asynchronous automaton with respect to dom
(i.e., checks the existence of the sets Qk and the relations δa). Moreover, if A
is not asynchronous, the test should produce a “witness” transition of this fact.
Fortunately, Morin provides in [Mor98] precisely such a test:

Theorem 5. [Mor98] Let A be a deterministic automaton and dom be a distri-
bution. There is the least family of equivalences (≡k)k∈Proc over the states of A
such that (below we denote by q ≡dom(a) q′ if ∀k ∈ dom(a) : q ≡k q′)

DE1: q
a→ q′ ∧ k 
∈ dom(a) ⇒ q ≡k q′

DE2: q1
a→ q′

1 ∧ q2
a→ q′

2 ∧ q1 ≡dom(a) q2 ⇒ q′
1 ≡dom(a) q′

2
Moreover A is an asynchronous automaton over dom iff the next two conditions
hold for any states q, q′ and any action a:

DS1: (∀k ∈ Proc : q1 ≡k q2) ⇒ q1 = q2

DS2: (∃q′
1 : q1

a→ q′
1 ∧ q1 ≡dom(a) q2) ⇒ ∃q′

2 : q2
a→ q′

2

It is not difficult to show that the least equivalences (≡k)k∈Proc can be com-
puted in polynomial time by means of a fixpoint algorithm, and so Theorem 5
provides a polynomial test to check if A is asynchronous.
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Because we are interested only in an asynchronous automaton accepting the
same language as the initial automaton, a weaker version of Theorem 5 suffices:
If the least family of equivalences satisfying DE1 and DE2 also satisfies DS2 (but
not necessarily DS1), there exists an asynchronous automaton recognising the
same language as A.

Notice that if A passes the test then we can easily derive the sets Qk of local
states and the δa’s functions for every action a: Qk contains the equivalence
classes of ≡k; given two classes q, q′, we have (q, q′) ∈ δa iff A contains an a-
transition between some representatives of q, q′. We remark for later use in our
case studies that the proof of [Mor98] proves in fact something stronger than
Theorem 5: Any equivalence satisfying DE1, DE2, and DS2 can be used to obtain
an asynchronous automaton language-equivalent with A. The least family is easy
to compute, but it yields an implementation in which the sets Qk are too large.

If A does not pass the test (this implies a red transition involved in the
failure), the heuristic will propose a red transition to be processed by the al-
gorithm. We find this transition by applying Morin’s test to the subautomaton
Ag&b containing only the green and black transitions of A. There are two cases:
(1) the test fails and then we can prove that there is a red edge involved in the
failure of DS2 on Ag&b: ∃q1

a→ q′
1 green or black and q1 ≡g&b

dom(a) q2 and ∃q2
a→ q′

2

red or (2) the test is successful and then we iteratively add red transitions to the
subautomaton Ag&b until DS2 is violated. In either case, we find a red transition
as a candidate for the unfolding algorithm.

5 Case Study: Mutual Exclusion

A mutual exclusion (mutex for short) situation appears when two or more pro-
cesses are trying to access for ‘private’ use a common resource. A distributed
solution to the mutex problem is a collection of programs, one for each process,
such that their concurrent execution satisfies three properties: mutual exclusion
(it is never the case that two processes have simultaneous access to the resource),
absence of starvation (if a process requests access to the resource, the request is
eventually granted), and deadlock freedom.

We consider first the problem for two processes. Let the actions be

Σ := {req1, enter1, exit1, req2, enter2, exit2}
with the intended meanings: request access to, enter and exit the critical sec-
tion giving access to the resource. The indices 1 and 2 specify the process that
executes the action.

We fix now a distribution. Obviously, we wish to have two processes P1, P2
such that ∆(P1) = {req1, enter1, exit1} and ∆(P2) = {req2, enter2, exit2}. We
also want req1‖req2 so we need at least two extra processes V1 and V2, such that
∆(V1) contains req1 but not req2, and ∆(V2) contains req2 but not req1. So let:

∆(V1) = {req1, enter1, exit1, enter2} and ∆(V2) = {req2, enter2, exit2, enter1}.4

4 We could also add exit1 to ∆(V1) and exit2 to ∆(V2); the solution does not change.
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Next, we define a regular language, Mutex 1, specifying the desired beha-
viours of the system. We want Mutex 1 to be the maximal language satisfying
the following conditions:

1. Mutex 1 is included in the shuffle of prefix-closures of (req1enter1exit1)∗ and
(req2enter2exit2)∗.
I.e., the processes execute req ienter iexit i in cyclic order.

2. Mutex 1 ⊆ Σ∗\ [Σ∗enter1(Σ\exit1)∗enter2Σ
∗] and its dual version.

I.e., a process must exit before the other one can enter. This guarantees
mutual exclusion.

3. Mutex 1 ⊆ Σ∗\ [Σ∗req1(Σ\enter1)∗enter2(Σ\enter1)∗enter2Σ
∗] and dual.

I.e., after a request by one process the other process can enter the critical
section at most once. This guarantees absence of starvation.

4. For any w ∈ Mutex 1, there exists an action a ∈ Σ such that wa ∈ Mutex 1.
This guarantees deadlock freedom.

Condition 3 needs to be discussed. In our current framework we cannot deal with
‘proper’ liveness properties, like: If a process requests access to the critical sec-
tion, then the access will eventually be granted. This is certainly a shortcoming
of our current framework. In this example, we enforce absence of starvation by
putting a concrete bound on the number of times a process can enter the critical
section after a request by the other process.

The largest language satisfying conditions 1-3 is regular because of the closure
properties of regular languages, and a minimal automaton recognising it can be
easily computed. Since it is deadlock-free, it recognises the largest language
satisfying conditions 1-4. 5

It turns out that the minimal automaton A1 for Mutex 1 is safe, satisfies
ID, FD, and Σ(A1) = Σ. Using Proposition 2 the recognised language is im-
plementable. This allows us to apply Zielonka’s construction, that yields a safe
asynchronous automaton with 34 states. Applying our heuristic based on Mo-
rin’s test we obtain that the minimal automaton recognising Mutex 1 and having
14 states, is already an asynchronous automaton. Families of local states and
transitions can be constructed using Morin’s theorem. The processes P1 and P2
have three local states each, while the processes V1 and V2 have 7 states.

We can now ask if the solution can be simplified, i.e., if there is a smaller fa-
mily of local states making the minimal automaton asynchronous. This amounts
to finding a larger family (≡k)(k∈Proc) of equivalences satisfying the properties
of Theorem 5. This can be done by merging equivalence classes, and checking if
the resulting equivalences still satisfy the properties. We have implemented this
procedure and it turns out that there exists another solution in which V1 and V2
have only 4 states. Figure 2 (top) shows the resulting asynchronous automaton,
translated into pseudocode for legibility. There 〈com〉 denotes that the command
com is executed in one single atomic step. We have represented the processes

5 If this had not been the case, the largest automaton would have been obtained by
removing all states not contained in any infinite path.
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Initialization: v1 := 0; v2 := 0
Process 1 ‖ Process 2

repeat forever repeat forever
[NCS1]; [NCS2];
v1 := 1; v2 := 1;
〈 await (v1 ∈ {1, 3} and v2 ∈ {0, 1}) then 〈 await (v1 ∈ {0, 1} and v2 ∈ {1, 3}) then

(v1 := 2 and (if v2 = 1 then v2 := 3)) 〉; ((if v1 = 1 then v1 := 3) and v2 := 2) 〉;
[CS1]; [CS2];
v1 := 0 v2 := 0

end repeat end repeat
Initialization: v1 := 0; v2 := 0

Process 1 ‖ Process 2
ncs1: [NCS1]; ncs2: [NCS2];

〈 case (v1 = 0): v1 := 1; goto e1 〈 case (v2 = 0): v2 := 1; goto e2

case (v1 = 2): v1 := 1; goto e′
1 case (v2 = 2): v2 := 3; goto e2

case (v1 = 3): v1 := 4; goto e′
1 〉 e2: 〈 await v1 ∈ {0, 2, 3, 4} then

e1: 〈 await v2 ∈ {0, 1} then case (v1 = 0): v1 := 2; goto cs2

case (v2 = 0): goto cs1 case (v1 = 2): v1 := 0; goto cs2

case (v2 = 1): goto cs′
1 〉 case (v1 = 3): v1 := 2; goto cs2

e′
1: 〈 await v2 ∈ {2, 3} then case (v1 = 4): v1 := 1; goto cs2 〉

case (v2 = 2): v2 := 0; goto cs1 cs2: [CS2];
case (v2 = 3): v2 := 1; goto cs′

1 〉 case (v2 = 1): v2 := 2; goto ncs2

cs1: [CS1]; v1 := 0; goto ncs1 case (v2 = 3): v2 := 0; goto ncs2

cs′
1: [CS1]; v1 := 3; goto ncs1

Fig. 2. The two synthesised solutions for Mutex (N=2)

V1 and V2 as two variables with range [0, 1, 2, 3]. 6 By construction, the algo-
rithm satisfies mutual exclusion, absence of starvation, and deadlock freedom.
Moreover, the two processes can make requests independently of each other.

Using the results of [BD98] it is easy to show that Mutex 1 is not a Petri net
language. However, it is a product language in the sense of [CMT99]. The results
of [CMT99] also allow to derive the solution of Fig. 2. In this case, asynchronous
automata do not have an advantage.

5.1 Mutual Exclusion Revisited

The mutex algorithm of the previous section requires to update the variables v1
and v2 before entering the critical section in one single atomic action, which is
difficult to implement. Is it possible to obtain a solution that avoids this problem?
We observe that the problem lies in the distribution we have chosen. We have
∆(V1) ∩ ∆(V2) = {enter1, enter2}, and so both V1 and V2 are involved in the
enter actions, which means that the implementation of both enter1 and enter2
requires to update both of v1 and v2 in a single atomic action. So we look for a
different distribution in which ∆(V1) ∩ ∆(V2) = ∅. We take:

∆(V1) = {req1, enter2, exit1} and ∆(V2) = {req2, enter1, exit2}.

6 The pseudocode was derived by hand, but it would be not difficult to automatise
the process.
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Unfortunately, Mutex 1 is not implementable anymore under this new distri-
bution. The minimal automaton fails to satisfy FD: There is a state in which
both enter1 and enter2 are enabled (and enter1‖enter2), but there is no con-
verging state to close the diamond. We then apply first heuristic from Sect. 4.1
and we indeed find a subautomaton satisfying ID and FD, deadlock-free and
containing all the actions.

Zielonka’s construction yields a safe asynchronous automaton with 4799 sta-
tes. Fortunately, our heuristic yields an asynchronous automaton with only 20
states (see [SEM03]). Once distributed over the four processes of the specifica-
tion (and merging local states if possible), we obtain the pseudocode shown in
Fig. 2 (bottom). The variables v1 and v2 range over [0, 1, 2, 3, 4] and [0, 1, 2, 3]
respectively. The labels associated with the commands suggest their type, for
example r1 means a request of the first process and x2 means an exit from the
critical section of the second process. Notice that the command corresponding
to a label is executed atomically and that the program pointers for the two
components advance only as a result of a goto command.

The components are now asymmetric, due to the fact that the first heuristic
’solved’ the FD conflict by removing an enter2 transition. Yet the algorithm is
starvation-free: If the second process request access to the critical section, it will
receive it as soon as possible.

The language Mutex 2 is neither a Petri net language nor the language of a
product of transition systems, and so the procedures of [BD98,CMT99] cannot
be applied.

5.2 More Processes

When we consider the mutual exclusion problem for an arbitrary number of
processes N ≥ 2, we choose the alphabet Σ = ∪1≤i≤N{req i, enter i, exit i}. There
exist several distributions of the actions. We choose generalizations of the two
distribution used for N = 2. For 1 ≤ i ≤ N :
– ∆1(Pi) := {req i, exit i, enter1, . . . , enterN}
– ∆2(Pi) := {req i, exit i, enter i}, ∆2(Vi) = ∆1(Pi)\enter i

We also generalize the regular specification of the problem. E.g., the mutual
exclusion property is specified as: Σ∗\ ⋃

i �=j [Σ
∗enter i(Σ\exit i)∗enter jΣ

∗].
The experiments for N = 2, 3, 4, 5 are presented in Table 1. In the first

column, we give the parameters of the problem. In the second column, we give the
size of the minimal automaton accepting the regular specification together with
the number of the processors in the distribution. (The tool AMoRE [Amo] was
used to construct the minimal automata recognising the regular specification.)
In each of the following columns size represents the global state space of the
solution (the asynchronous automaton) and time is the computation time given
in seconds. A dash symbol ‘–’ represents the fact that the system run out of
memory without finding a solution. The third and fourth columns give the results
after applying the first and respectively second heuristic in Sect. 4.1, followed by
Zielonka’s procedure. The fifth and sixth columns give the results after applying
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Table 1. Experimental results

Problem Input Zielonka 1 Zielonka 2 Heuristic 1 Heuristic 2
|A| |∆| size time size time size time size time

Mutex(2,∆1) 14 4 34 <0.01 23 <0.01 14 <0.01 10 <0.01
Mutex(2,∆2) 14 4 4799 5.30 2834 2.66 17 <0.01 16 <0.01
Mutex(3,∆1) 107 6 – – – – 107 <0.01 30 <0.01
Mutex(3,∆2) 107 6 – – – – – – 58 0.11
Mutex(4,∆1) 1340 8 – – – – 1340 0.31 62 1.25
Mutex(4,∆2) 1340 8 – – – – – – 157 3.83
Mutex(5,∆1) 25338 10 – – – – 25338 170.95 147 1000.76
Mutex(5,∆2) 25338 10 – – – – – – 387 1053.79

the first and respectively second heuristic in Sect. 4.1, followed by the heuristic
in Sect. 4.2. (The experiments were performed on a machine with 2.4 GHz CPU
and 1 GB RAM.)

6 Further Remarks

We have proposed to apply the theory of asynchronous automata to the pro-
blem of synthesising closed distributed algorithms. We have observed that the
right implementation model are safe asynchronous automata, and we have cha-
racterised their languages. We defined the synthesis problem in our framework
and proved that it is undecidable, therefore we focused our attention on an NP-
complete subclass of solutions. We have implemented Zielonka’s algorithm, and
observed that it leads to large implementations even for natural and relevant
case studies where much smaller implementations exist. We have derived heuri-
stics to make the synthesis problem more feasible in practice. We have used the
heuristics to automatically generate mutual exclusion algorithms.

Obtaining ‘Elegant’ Solutions: Our solutions to the mutex problem are not
‘elegant’: They use variables with larger domains than those appearing in the
literature, and a human finds it difficult to understand why they are correct.
Notice, however, that this is the case with virtually all computer generated
outputs, whether they are HTML text, program code, or a computer generated
proof of a formula in a logic. Our solutions are correct and relatively small.

Specifying with Temporal Logic: Notice that our approach is compatible with
giving specifications as LTL temporal logic formulas over finite strings, since
the language of finite words satisfying a formula is known to be regular, and an
automaton recognising this language can be effectively computed.

Dealing with Liveness Properties: Currently our approach cannot deal with
liveness properties. Loosely speaking, ‘eventually’ properties have to be trans-
formed into properties of the form ‘before this or that happens’. Dealing with
liveness properties requires to consider the theory of asynchronous automata on
infinite words, for which not much is known yet (see Chap. 11 of [DR95]). The
approaches of [BD98,CMT99] take a transition system as specification, and so
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do not consider liveness properties either. The approach of [MT02] can deal with
liveness properties, but it can only synthesise controllers satisfying certain condi-
tions (clocked controllers). These conditions would not appear in a reformulation
of our results in a distributed controllers synthesis.
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