
Model-driven Service Integration Testing - A Case Study

Sebastian Wieczorek and Alin Stefanescu and Andreas Roth
SAP Research

Darmstadt, Germany
{name.surname}@sap.com

Abstract—This paper presents a case study for the mod-
eling and model-based testing (MBT) of enterprise service
choreographies. Our proposed MBT approach uses proprietary
models called Message Choreography Models (MCM) as test
models. The case study illustrates how MCM-based service
integration testing allows to formalize design decisions and
enables full integration into an existing industrial test infras-
tructure by using the concepts of domain specific languages
and model transformations. Further, the MBT tools integrated
into the testing framework have been compared based on one
concrete use case.

Keywords-Model-based Testing; Enterprise Systems; Service-
oriented Architecture; Case Study; Service Choreographies

I. INTRODUCTION

Service-oriented architectures (SOA) provide frameworks
and methods to compose single services in order to realize
complex business scenarios. At the lower end, a single
service is described as a set of operations and message types,
its functioning relying on a simple request-response pattern.
Modeling and implementation of single services using stan-
dards like XML, SOAP, and WSDL is well mastered both
in theory and practice. At the service integration level, more
complicated specifications are needed to capture not only
the message exchange and the underlying message types, but
also the dependencies between these exchanged messages,
i.e., both control-flow and data-flow dependencies. Thus,
the challenging part of the SOA-based development lies in
integration of different services according to the defined
business processes. While SOA adoption is gaining pace
towards becoming mainstream [1], the need of SOA quality
assurance becomes an activity of paramount importance,
with SOA testing filling a central spot. While single service
testing is usually well researched [2], [3] and consistently
deployed in practice, the field of service integration testing
poses several new challenges [4]. The difficulties to be
overcome are due to the heterogeneity, high distributivity,
dynamicity, and loose coupling of the service-based systems.

The case study presented in the paper has been carried out
in the context of SAP. Being a leader in the area of business
software, SAP also delivers SOA via its service-enabled
software (e.g., SAP Business ByDesign1, SAP Business
Suite2) and its SOA-based, open technology platform SAP

1http://www.sap.com/businessbydesign
2http://www.sap.com/solutions/business-suite

NetWeaver3. The Enterprise SOA developed in a model-
driven way at SAP has a dozen types of models containing
modeling information of business objects, deployment units,
service components, service interfaces, integration scenar-
ios, business process variants, and service choreographies
[5]. It contains several thousands of services and several
hundreds of choreographies and tens of millions of lines
of code implementing them. Testing such a huge software
system involves thousands of testers using several types of
testing. It is essential that powerful automation tools and
techniques are used to address the sheer complexity of the
system. MBT [6] is an ideal candidate to use the high-level
information from the SOA models for test generation.

In order to tackle the challenges of service integration
testing in such industrial setting, in previous work we de-
veloped a domain-specific language (DSL) that can be used
to derive integration tests, called Message Choreography
Modeling (MCM) [7]. Further, we created a testing frame-
work that realizes model-based service integration testing
by incorporating different MBT tools [8], [9]. The main
contribution of this paper is to evaluate our modeling and
model-based testing approach for service integration in the
SOA development. First, the applicability of the approach in
the industrial setting is verified. Second, its efficiency and
effectiveness were investigated.

The paper is structured as follows. Section II sketches
the SOA development approach that is targeted by the case
study. Section III describes the design and context of the
case study. The case study execution, including the modeling
and test generation, is described in Section IV. Section V
explains the results of the case study, while Section VI
summarizes the paper.

II. DEVELOPMENT PROCESS

As in every customer oriented scenario, a SOA develop-
ment process starts with the definition of user and market
requirements. For Enterprise SOA applications, functional
requirements are described by the business processes that
have to be supported. As illustrated in Figure 1, this top-
down approach of software development, starting with a
high level description of requirements, can be combined
easily with the concepts of model-driven development and

3http://www.sap.com/platform/netweaver



Figure 1. Envisioned development and testing process for SOA integration

MBT, where general specifications of a system are stepwise
refined by adding relevant domain specific information. In
the following, an overview of the depicted development
process is given, with a focus on service integration.

Model-driven Development (MDD): By performing the
design steps of MDD, the initial requirements are gradu-
ally refined into development models. These comprise of
structural models, identifying and connecting the service
components, and behavioral models of the business process
flow. Having a formal definition of the communication
protocol allows applying automatic model verification and
validation techniques. For example the absence of deadlocks,
livelocks, inconsumable messages, or local enforceability
can be proven at this early development stage.

Applying pure MDD techniques in the continuing devel-
opment process would mean that the development models
are further refined, with the ultimate goal to automatically
derive code. However, various unsolved challenges have
been identified (cf. [10], [11]) for the industrial application
of MDD concepts for code generation, such as: lacking tool
support for model-level debugging, lacking user expertise,
and lacking support for versioning and merging of models.
Consequently, the industrial application of MDD concepts
on low abstraction layers is usually bypassed.

Test-driven Development (TDD): Instead, as illustrated
in Figure 1, the development models can be used as input
for a Model2Code Generator, enabling automated generation
of skeleton code and stubs, with the intention that the
generated code will be refined manually. After automatically
generating code stubs from the structural models, developers

start to create tests for the functions they have to implement
(i.e., unit and component tests). In this way, the developers
are able to validate their own code automatically by running
these tests.

Model-based Testing (MBT): As depicted in Figure 1,
integration testing is carried out in parallel to the develop-
ment of the software components. A recent study [12] shows
that a key factor of success is to apply continuous integra-
tion throughout the development. The core of continuous
integration is to combine and try out the developed func-
tionality very frequently in order to spot problems as early
as possible. Especially for applications whose components
are loosely coupled, as it clearly is the case for SOA, tests
of the communication and interaction are vital and therefore
should be integrated into the TDD cycles.

MBT approaches promise to effectively support automatic
test generation for service integration. By applying MBT in
the integration phase, not only the effort for test case gen-
eration can be decreased, but also test coverage and overall
test effort can be controlled in an easy and transparent way.
Further, model-based integration testing provides the means
of carrying out continuous integration, as the test cases can
be generated even before the first line of code is written.
Hence, integration testing can be carried out throughout the
development.

Test Execution: The considerations that lead to manual
programming instead of automatic code generation also
apply to the test concretization of the generated test cases.
The missing modeling support on lower abstraction layers
hinders the industrial application of fully automatic test case
generation. Therefore, especially the provision of appropri-
ate test data is currently the responsibility of the testers. In
the context of SAP, a tool called Test Data Migration Server
(TDMS) exists, which supports this activity by deriving
consistent reference data for testing from customer systems.
If these data samples are available, testers are able to choose
the appropriate input for each test case from that source,
otherwise they have to create it.

For test concretization, a mixed approach is used (accord-
ing to the nomenclature of [6, ch. 8]). The manual refinement
of the abstract test cases follows the keyword-driven testing
principles. Keyword-driven testing (or action-word testing)
uses action keywords in the test cases, in addition to data.
Each action keyword corresponds to a fragment of a test
script (the adapter code), which allows the test execution
tool to translate a sequence of keywords and data values
into executable tests [6]. The test execution environment is
provided by the SAP Test Workbench.

III. CASE STUDY DESIGN

In this section, we first describe the context of the case
study and then the planned case study activities.



A. Setting

We start by shortly presenting the system used in the case
study and afterwards, the users participating in the case study
are characterized.

System under Test: The concepts described below have
been developed in collaboration with the SAP product
group that is responsible for the development of the SOA-
based solution SAP Business ByDesign. This solution is
created on top of SAP NetWeaver, which provides a SOA
technology platform that includes a modern messaging in-
frastructure [13]. At the time when the case study was
conducted, Business ByDesign was quite mature in terms of
functionality and quality and was already released to selected
customers. Currently, Business ByDesign is freely available
in many countries.

The design of SAP Business ByDesign has been captured
by various modeling artifacts, based on proprietary SAP lan-
guages [5]. For the development of the service components,
structural information has been provided. These models
includes interface descriptions for each service, component
integration models specifying which service components
are connected, and class descriptions for the objects inside
a service component. The implementation based on these
models was carried out by distributed development teams.
The applied development process consisted of periodic im-
plementation phases, interleaved with testing and documen-
tation activities.

Case Study Participants: Two groups of users have
been involved in the case study. Their background and
relevant qualification is given below:

• Integration experts have the task to coordinate the
integration of service components during development.
They have a good understanding of the communica-
tion processes between service components and are
experienced with structural modeling. As behavioral
modeling was not extensively used for the development
of SAP Business ByDesign, the integration experts did
not have much exposure to such concepts.

• Integration testers are deriving and executing test cases
for service component integration testing based on
functional descriptions of the system. These descrip-
tions are provided in natural language by developers
(i.e. technical documentation) and business analysts
(i.e. customer requirements). They are trained and ex-
perienced to use proprietary testing tools, but do not
have any MBT expertise.

B. Approach

In the initial planning of the case study, we intended to
follow the whole service integration process, as described in
Section II, i.e., from producing MCM models as choreogra-
phy descriptions down to executing the derived test scripts.
However, as the targeted SAP product itself already entered
the final testing phase, the envisioned utilization of MCM

models in the implementation phase was omitted from the
scope of the case study. Further, the availability of the above
described participants was very constrained, which made it
necessary to conduct the case study in a guided fashion.

The case study consisted of four use cases. Below we
describe the performed modeling and testing activities.

Modeling: The identification of the four suitable use
cases (pilots) was mainly driven by organizational consid-
erations and hence rather random. It was intended that for
each pilot an integration expert conducts the choreography
modeling autonomously on a stable version of the MCM
editor after having some additional modeling guidelines and
initial training. However, due to the mentioned time con-
straints, it was planned that the first draft of MCM models
would be sketched in guided sessions of 1 hour per pilot,
followed by a consolidation and refinement phase conducted
by the authors. Afterwards the models were planned to be
validated by the pilot users in another guided session of 1
hour.

Testing: There were three test generators [8], [9] used:
(1) an in-house FSM (Finite State Machine) based generator
using classical graph-coverage algorithms like the Chinese
Postman algorithm, (2) an MC (Model-Checking) based
generator using a model-checker for test generation, that
tackles also extended finite state machines features like
guards and side effects on global variables, and (3) an open-
source heuristic-based test generator called MbtTigris4.

For each of the four use cases, one test suite was generated
and concretized. First, the generated abstract test cases were
used to automatically generate and load test scripts into
the test environment of the development teams. Second,
the corresponding MCM model and automatically generated
UML message sequence charts for each test case have been
supplied for each pilot. Third, the testers were asked to
concretize the generated test scripts autonomously by adding
test data information and to execute them on the system
under test.

Analysis: As described, the aim of the case study was to
gain evidence that the described SOA development approach
is applicable, efficient and effective in an industrial setting.
To derive the results, two sources of information are used:

1) The supervision of the case study execution by the
authors allowed to gather some unbiased observations
(e.g., execution time of the test generation, number of
uncovered faults).

2) Participants were questioned in semistructured inter-
views. This interview technique, which is mixing
open-ended and specific questions, was chosen, be-
cause we assumed that according to [14], the responses
might lead to further discussions, which better cap-
tures information of such unknown structure.

4http://mbt.tigris.org



IV. CASE STUDY EXECUTION

In the previous section, an overview of the case study
context and activities have been provided. In this section,
information about the case study execution, divided into the
modeling and testing activities is given. Afterwards, for one
of the pilots, the test generation is described explicitly in
order to compare the different MBT tools that are integrated
into the testing framework.

A. Modeling

According to the plan described in Section III, the creation
of the pilot models was conducted in 2 guided sessions
that lasted about 1 hour. In addition to that, the authors
conducted another 2 hours of refinement and consolidation
of the results.

After the second session, semistructured interviews were
conducted with the pilot users. The response was very pos-
itive. The participants perceived the possibility to formally
describe the design as most beneficial, as it has the potential
to ease the communication between development teams
of communicating services significantly. Further, the full
integration of existing modeling content (e.g. interface and
component specifications) was highlighted. The graphical
modeling approach using a state-based representation was
generally perceived intuitive,

On the other hand, the proprietary constraint language
for the guards of the transitions usually needed some clar-
ifications. Further, the participants had problems in under-
standing whether and how their modeling decisions would
affect the test generation, which was mainly due to the fact
that in their role as integration experts they were not deeply
involved in the actual testing process and were unfamiliar
with the MBT concepts. However, in the case study the
provided guidance mitigated such issues.

B. Test Generation

As described in Section III, for each pilot an abstract test
suite has been generated automatically. The generated test
suites had sizes ranging between 4 and 8 test cases with
an average length of 10 test steps. A test step, in this case,
refers to the triggering of a message. For the four pilots,
two times the FSM-based and two times the MC-based test
generator have been used. The heuristic-based test generator
was used only extra for comparison.

The participating testers were able to read, understand,
and enhance the generated test suites with concrete test
data and message triggers, even without having detailed
knowledge of the tested integration. The concretization effort
per pilot test suite was estimated to be between around 4
hours. The consequent test execution did not uncover any
fault in the development system5.

5However, one bug in the testing framework was found.

After successfully running the test suites, semistructured
interview sessions with the pilot teams were conducted. The
overall response again was positive. For all pilots, the test
generation produced reasonably small test suites. The pilot
users had confidence in the quality and completeness of
the tests and perceived a design-based test generation as
beneficial. In all cases, the generated test suites covered at
least the already existing integration tests.

Although it was impossible to compare the concretization
effort with the effort of implementing the test cases by
hand, all participants agreed that the evaluated approach was
time-saving, due to the automatic script generation and the
concept of enforcing a high reuse of generic scripts for the
test steps. On average, a saving of 50% was estimated by the
pilot users for the test generation and concretization tasks.
Also the seamless integration of the tool into SAP’s testing
framework and the consequent usability of the test scripts
for automatic regression testing was appreciated.

C. Comparison of Test Generators

As mentioned, the identification of the four suitable
pilots out of about 200 existing service choreographies was
mainly driven by organizational considerations and hence
rather random. Surprisingly though, the derived choreog-
raphy models had relatively equal complexity. All MCMs
incorporated some constraints on the exchanged messages,
but half of them did not contain dependent transitions (i.e.,
the side effects on one transition influence the guards on
another transition) and hence were suited for FSM-based
test generation. In the following, one such pilot is used, as
it allows to compare the three test generators.

Figure 2 shows the anonymized MCM of the pilot that is
chosen for the description of the case study execution. States
are depicted in rounded rectangles, messages in envelopes.
Diamond-shaped connectors enable the message sending in
a certain state, while arrow-shaped connectors describe the
message effect.

The original choreography model of the pilot has the same
structure, but the communication is used in a business con-
versation which is not related to business task management,
as implied by the naming of the modeling elements. In the
following, the results of applying the three different test
generators mentioned in Section III are described.

FSM-based generation: Applying the FSM-based test
generator to the given pilot, the following test cases are
derived from MCM. The computation was carried out in
less than 1 millisecond.

Test 1: Create, Stop, Revoke, Release, Close,
Restart, Block, Unblock, Close.

Test 2: Create, Change, Delete.
Note that the implemented algorithm provides a test suite

that covers the model with the minimal number of transi-
tions. Sometimes, the FSM-based test generation generates
a test suite contains few but long test cases and this was the



Figure 2. The MCM of an example pilot

case above. The problem with long test cases is that they
are much harder to maintain and to debug in case of errors.
Also, FSM-based generation may generate infeasible test
cases when applied to choreography models with dependent
transitions. Therefore its use is limited.

MC-based generation: The MC-based test generator
provides a test suite that covers all the transitions of the
model minimal number of transitions. The resulting test suite
for the given pilot is given below and has been produced in
about 0.4 seconds:

Test 1: Create, Release, Block, Unblock, Close.
Test 2: Create, Release, Close, Restart, Close.
Test 3: Create, Change, Stop, Revoke, Delete.
Given the fact that the MC-based algorithm implemented

a breadth-first graph traversal strategy, the test suite contains
1 more test case and traverses 3 more transitions than the
FSM-based suite. However, the longest test case of the suite
contains only 5 transitions, compared to 9 transitions in the
FSM-based suite.

A disadvantage of this approach is that typically the
model-checking based test generation suffers from the state
space explosion problem. For pilots with a higher complexity
(e.g., containing more states and integer variables), advanced
tuning of the model checker was necessary to produce a
result in acceptable time. This might be a problem for testers
with no formal methods background.

Heuristics-based generation: When applying the
heuristics-based test generator to the given pilot and asking
for a test suite that covers all transitions or terminates after
100 steps, the following results can be obtained after 10
runs.

• All runs terminated, because a test suite with full
transition coverage was found.

• The average test suite contained 46 test steps, dis-
tributed over 5 to 6 test cases.

• The average execution time to generate a test suite was
3 seconds.

• After optimization, the average test suite contained 21
test steps, distributed over 2 test cases.

It can be seen that this test generation approach does not
produce optimal results. However, it has the advantage to
always return a result in acceptable time. For the other pilots
of the case study, it was possible to find test suites with at
least 90% transition coverage on average with equal settings,
while the computation time was constantly 3 seconds per
generated test suite.

Results: Each test generation method has its strengths
and weaknesses in certain context. After the performed
comparison we can envisage the following strategy for
choosing between them: “Use the FSM-approach in case
the transitions of the MCM are independent of each other.
If this is not the case, the MC-based approach may be
applied. However, if MCM is too complex and the MC-based
approach does not terminate, a test suite could finally be
obtained by using the heuristic-based approach.” However,
note that the third case does not guarantee optimal results.

V. DISCUSSION

The aim of the case study was to gain evidence for the
applicability, efficiency and effectiveness of the described
MCM approach. In the following, these three points are
discussed.

Applicability: The case study showed that it was pos-
sible to model randomly chosen service communications
of a SOA-based product using MCM. These results imply
that MCM is expressive enough to capture relevant service
communication. Further, these choreography models were
suitable to automatically derive test suites that could be
concretized and executed. According to the pilot users, the
test suites were covering all tests that had been created
manually in the previous testing.



Efficiency: As described in Section IV, there has been
positive feedback regarding the automated test generation
and the utilized reuse concept of test scripts. The time
saving potential of the reuse concept was further demon-
strated when concretizing all the generated test suites. After
deriving the first executable test suite, the generic reuse of
concretized test steps allowed to run the other test suite
after only 10 minutes of minor adaptations. This implies
that extending previously generated test suites or applying
test generators with more complex coverage criteria will
only increase the automatic test execution but not the semi-
automatic concretization effort.

Effectiveness: The fact that no fault could be discovered
during for the four pilots has various reasons. First of all,
the targeted system was already tested rigorously and had
even been shipped to pilot customers, who heavily used
them. Further, the choreography models have been created
in collaboration with the development teams that had imple-
mented these choreographies. Therefore, the discovery of
misinterpretations of the initial requirements were unlikely.
Consequently, no clear judgment over the effectiveness
based on the case study is possible.

However, in the interviews that followed the case study,
the pilot users stated that the generated test suites were
covering all manually derived integration test cases. These
statements are hard to prove, because the manual test
cases are not directly contained in the generated test suites
and have not been created in relation to a choreogra-
phy model. Nevertheless, these statements indicate that the
testers greatly believe in the effectiveness of the approach.

VI. CONCLUSION

In this paper, we presented a detailed case study of
application of MBT into an industrial SOA domain. Our
experiment confirmed the applicability and resource-saving
potential of the described approach. These positive results
were convincing enough to allow the continuation of the
application of MBT on a larger scale at SAP, which is
now in progress. This is in line with other accounts from
research (see [6]) and industry (see e.g. [15] for the positive
MBT experiences at Microsoft). Given the new concepts of
the SOA domain and especially the complex data structures
and test databases, there are still challenges ahead. We are
currently working on test data modeling adapted to the
Enterprise SOA domain, that should further increase the
automation degree in the proposed MBT approach.

ACKNOWLEDGMENT

This work was partially supported by projects Modelplex6

and Deploy7 (EC-grants no. 034081 and 214158).

6http://www.modelplex-ist.org
7http://www.deploy-project.eu

REFERENCES

[1] R. Heffner, “Across all vertical industry groups, the majority
of SOA users are expanding its use,” Forrester Research,
Research Report, May 2009.

[2] L. Baresi and E. Di Nitto, Test and Analysis of Web Services.
Springer, 2007.

[3] W.-T. Tsai, Y. Chen, R. A. Paul, H. Huang, X. Zhou, and
X. Wei, “Adaptive testing, oracle generation, and test case
ranking for web services,” in 29th Int. Computer Software and
Applications Conference (COMPSAC’05). IEEE Computer
Society, 2005, pp. 101–106.

[4] G. Canfora and M. D. Penta, “Service-oriented architectures
testing: A survey,” in Software Engineering: International
Summer Schools, ISSSE 2006-2008, Revised Tutorial Lec-
tures. Springer-Verlag, 2009, pp. 78–105.

[5] S. Kätker and S. Patig, “Model-driven development of
service-oriented business application systems,” in Business
Services: Konzepte, Technologien, Anwendungen. sterreichis-
che Computer Gesellschaft, 2009, vol. Band 1, pp. 171–180.

[6] M. Utting and B. Legeard, Practical model-based testing, a
tools approach. Morgan Kaufmann, 2007.

[7] S. Wieczorek, A. Roth, A. Stefanescu, V. Kozyura, A. Charfi,
F. M. Kraft, and I. Schieferdecker, “Viewpoints for mod-
eling choreographies in service-oriented architectures,” in
Proc. of 8th IEEE/IFIP Conference on Software Architecture
(WICSA’09). IEEE Computer Society, 2009, pp. 11–20.

[8] S. Wieczorek, V. Kozyura, A. Roth, M. Leuschel, J. Bendis-
posto, D. Plagge, and I. Schieferdecker, “Applying model
checking to generate model-based integration tests from
choreography models,” in Proc. of the 21st IFIP Int. Conf.
on Testing of Communicating Systems (TESTCOM’09), ser.
LNCS, vol. 5826. Springer, 2009, pp. 179–194.

[9] A. Stefanescu, S. Wieczorek, and A. Kirshin, “MBT4Chor:
A model-based testing approach for service choreographies,”
in European Conference on Model Driven Architecture -
Foundations and Applications (ECMDA-FA’09), ser. LNCS,
vol. 5562. Springer, 2009, pp. 313–324.

[10] S. Teppola, P. Parviainen, and J. Takalo, “Challenges in the
Deployment of Model Driven Development,” in Proceedings
of the Fourth International Conference on Software Engineer-
ing Advances (ICSEA’09). IEEE, 2009.

[11] A. Uhl, “Model-driven development in the enterprise,” IEEE
SOFTWARE, vol. 25, pp. 46–49, 2008.

[12] T. E. Murphy, “Using continuous build to drive quality,”
Gartner Research Report No. G00166848, 2009.

[13] M. Krimmel and J. Orb, SAP NetWeaver Process Integration,
2nd ed. Galileo Press, 2009.

[14] C. Seaman, “Qualitative Methods in Empirical Studies of
Software Engineering,” IEEE Transactions on Software En-
gineering, vol. 25, no. 4, p. 557, 1999.

[15] W. Grieskamp, “A success story for model-based testing: Mi-
crosoft’s protocol documentation quality assurance program,”
Invited Talk at TESTCOM/FATES’09 Conference, 2009.


