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Abstract— We consider the following problem: GIVEN (1)
a set of service requests occurring at known locations in an
environment, (2) a set of temporal and logical constraints on
how the requests need to be serviced, (3) a team of robots
and their capacities to service the requests individually or
through collaboration, FIND robot control and communication
strategies guaranteeing the correct servicing of the requests.
Our approach is hierarchical. At the top level, we check whether
the specification, which is a regular expression over the requests,
is distributable among the robots given their service and
cooperation capabilities; if the answer is positive, we generate
individual specifications in the form of finite state automata,
and interaction rules in the form of synchronizations on shared
requests. At the bottom level, we check whether the local
specifications and the synchronizations can be implemented
given the motion and communication constraints of the robots;
if the answer is positive, we generate robot motion and service
plans, which are then mapped to control and communication
strategies. We illustrate the method with experimental and
simulation results.

I. INTRODUCTION

While the “classical” motion planning problem is given
simply as “go from A to B” [1], [2], missions typically
require much more complicated tasks. Consider, for example,
an emergency response scenario in the miniature Robotic
Urban-Like Environment (RULE) shown in Fig. 1 and Fig.
2, where a firefighter autonomous vehicle needs to get to
location P3, where there is fire. Before getting there, the
vehicle needs to get water, which is available on road R1 or
R2. The vehicle is not allowed to cross intersection I3, and it
is required to obey the traffic rules at all times. Such a “rich”
specification cannot be trivially converted to a sequence of
“go from A to B” primitives. When several vehicles are
available, the problem becomes even more interesting and
challenging. Assume that several service requests occur at
different locations in the city, and they need to be serviced
subject to some temporal and logical constraints. Some of
these requests can be serviced by one (possibly specific)
vehicle, while others require the collaboration of two or
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Fig. 1: Robotic Urban-Like Environment (RULE). Khepera III car-
like robots move autonomously on streets while staying in their
lanes, obeying traffic rules, and avoiding collisions.

more (possibly specific) vehicles. With reference to the same
urban emergency response scenario, assume that the task is to
help an injured person located at P1. A medical emergency
vehicle and a traffic escort vehicle need to eventually get
there. In order to provide medical support, the emergency
vehicle needs to pick medical supplies that can be found at
P3 and P4 before going to P1. Can we generate provably-
correct individual control and communication strategies from
such rich, global specifications? This is the problem that we
address in this paper.

It has recently been suggested that temporal logics, such
as Linear Temporal Logic (LTL) and Computation Tree
Logic (CTL) [3], can be used as expressive specification
languages for mobile robots [4], [5], [6], and model checking
algorithms can be adapted for motion planning and controller
synthesis from such specifications. Some related works show
that such techniques can be extended to multi-agent systems
through the use of parallel composition [7], [8] or reactive
games [9]. However, such bottom-up approaches are expen-
sive and can lead to state-space explosion even for relatively
simple problems. As a result, there is a need for top-down
approaches, in which “rich”, global specifications can be
decomposed into local (individual) specifications, which can
then be used to automatically synthesize robot control and
communication strategies.

In this paper, we draw inspiration from the area of
distributed formal synthesis [10] to develop such a top-down
approach. We consider a team of robots that can move among
the regions of a partitioned environment, and which have
known capabilities of servicing a set of requests that can
occur in the regions of the partition. Some of these requests
can be serviced by a robot individually, while some require
the cooperation of groups of robots. We present an approach
that allows for the fully automatic synthesis of robot control
and communication strategies from a task specification given



as a regular expression over the set of requests. For simplicity
of presentation, we model the (partitioned) environment as
a graph and the robots as agents that can move between
adjacent vertices and can communicate only when at par-
ticular vertices. This framework is quite general and can be
used in conjunction with cell decomposition motion planning
techniques [1]. In particular, by using feedback controllers
for facet reachability polytopes [11], [12], this scenario can
be immediately extended to robots with continuous dynam-
ics moving in environments with polytopic partitions. For
illustration, we apply the developed computation framework
to our Robotic Urban-Like Environment (RULE) (Fig. 1).

II. PRELIMINARIES

For a set Σ, we use |Σ| to denote its cardinality. Given a
set Σ, a collection of subsets ∆ = {Σi ⊆ Σ, i ∈ I} is called
a distribution over Σ if ∪i∈IΣi = Σ, where I is an index
set. A word w over a set Σ is a sequence of symbols from
Σ. We use Σ∗ to denote the set of all finite words over Σ.
A language is a set of words.

Definition 1: A transition system (TS) is a tuple T =
(S, s0,→,Π,�), where S is a finite set of states, s0 ∈ S
is the initial state, and →⊆ S × S is the transition relation,
Π is a finite set of atomic propositions (observations), and
� ⊆ Q×Π is a satisfaction relation.

A transition (s, s′) ∈→ is also denoted by s→ s′. A run
of T is a sequence r(1)r(2)r(3) . . . r(n) with the property
that r(1) = s0, r(i) ∈ S, and (r(i), r(i+ 1)) ∈→,∀i > 1.

Definition 2: A finite state automaton (FSA) is a tuple
A = (Q, q0,Σ,→, F ), where Q is the set of states, q0 ∈ Q
is the initial state, Σ is the set (alphabet) of actions, →∈
Q × Σ × Q is the transition relation, and F ⊆ Q is the set
of accepting states.

We also write q
σ−→ q′ to denote (q, σ, q′) ∈→. In this

paper, we assume that all the FSAs are deterministic. The
language accepted by an FSA A, denoted by L(A), is the set
of all finite words accepted by A. The language accepted by
an FSA is called a regular language, which can be concisely
represented by a regular expression (RE). Given an RE,
an FSA accepting the language satisfying the RE can be
constructed by using an off-the-shelf tool, such as JFLAP
[13].

Definition 3: The synchronous product (SP) of n FSAs
Ai = (Qi, q0i

,Σi,→i, Fi), denoted by ‖ni=1 Ai, is an FSA
(Q, q0,Σ,→, F ), where Q = Q1 × Q2 × . . . × Qn, q0 =
(q01

, q02
, . . . , q0n

), Σ = ∪ni=1Σi, and F = F1×F2×. . .×Fn.
The transition relation →⊆ Q × Σ × Q is defined by q

σ−→
q′ iff ∀ i ∈ Iσ : q[i]

σ−→i q
′[i] and ∀ i /∈ Iσ : q[i] = q′[i],

where q[i] denotes the ith component of q and Iσ = {i ∈
{1, . . . , n} | σ ∈ Σi}.

For a word w ∈ Σ∗ and a subset S ⊆ Σ, we denote
by w �S the projection of w onto S, which is obtained by
erasing all actions σ /∈ S in w. For a language L ⊆ Σ∗ and
a subset S ⊆ Σ, we denote by L�S the projection of L onto
S, which is given by L�S := {w �S | w ∈ L}. Starting from
the observation that the projection of a regular language is
a regular language, the projection of an FSA A on a subset

S ⊆ Σ is an FSA A �S , which can be constructed from A
through ε-closure and optional minimization ([14]).

Definition 4: Given a distribution ∆, the product of a set
of languages Li over Σi is denoted by ‖i∈I Li and defined
as ‖i∈I Li := {w ∈ Σ∗ | w �Σi

∈ Li,∀i ∈ I}. A product
language over ∆ is a language L such that L =‖i∈I Li,
where Li = L �Σi ,∀i ∈ I .

Definition 5: (Adapted from [5]) The product automaton
(PA) P = T × A between the transition system T =
(S, s0,→,Σ,�) and the FSA A = (Q, q0,Σ,→A, F ) is
defined as the tuple P = (QP , q0P

,Σ,→P , FP ), where
QP = S × Q, q0P

= (s0, q0) is the initial state, and
FP = S × F is the set of accepting states. The transition
relation→P⊆ QP ×Σ×QP is defined as (s, q)

σ−→P (s′, q′)
if and only if s→ s′, (s, σ) ∈ � and q σ−→A q

′,
It is easy to see that a word w ∈ Σ∗ is accepted by P

(w ∈ L(P )) only if w is accepted by A (w ∈ L(A)).

III. PROBLEM FORMULATION

Let
E = (V,→E) (1)

be an environment graph, where V is the set of vertices
and →E⊆ V × V is a relation modeling the set of edges.
For example, E can be the quotient graph of a partitioned
environment, where V is a set of labels for the regions in the
partition, and→E is the corresponding adjacency relation. In
particular, V can be a set of labels for the roads, intersections,
and parking spaces in an urban-like environment and →E
can show how these are connected (see Sec. VII). Assume
we have a team of robots (moving agents) Ai, i ∈ I ,
whose motions are restricted by E , where I is a set of robot
labels. We assume that they have identical communication
capabilities. The set of communication constraints is defined
as an undirected graph

C = (V,EC), (2)

where EC ⊆ V × V is a symmetric relation modeling a set
of communication edges. In other words, (vi, vj) ∈ EC if
and only if a robot located at vi can directly communicate
with another robot located at vj .

Let Σ be a set of the requests that can occur at the vertices
of E . The locations of the requests are modeled as a relation
loc ⊆ V×Σ with the following meaning: (v, σ) ∈ loc means
that service request σ occurs at vertex v.

We model the capacity of the robots to service requests as
a distribution ∆, where ∪i∈IΣi = Σ. For a given request
σ ∈ Σ, we define Iσ = {i ∈ I |σ ∈ Σi}, i.e., Iσ is
the set of labels of all the robots that can service request
σ. The semantics of this distribution is defined as follows.
For an arbitrary request σ, if |Iσ| = 1 (i.e., there is only
one robot that owns it), the robot can (and should) service
the request by itself, independent of the other robots. This
kind of request is called independent request. If |Iσ| > 1,
all the robots Ai with i ∈ Iσ must service the request
simultaneously. This kind of request is called shared request.



The meaning of servicing a request σ by the robotic team
depends on whether σ is an independent or a shared request.
If |Iσ| = 1, then the request is serviced if the only robot
that owns σ visits one vertex v that satisfies (v, σ) ∈ loc.
If |Iσ| > 1, then all the robots Ai with i ∈ Iσ must
service the request simultaneously. Therefore, all the robots
that own σ should be in the same connected component of
the communication graph C to service σ (i.e., they need
to communicate to service σ together). Depending on the
topology of E and C, the cardinality of Iσ , the motion
capabilities of the robots (see below), and the location(s)
of σ, there are multiple ways in which σ can be serviced.
Choosing a (optimal) solution is one of the fundamental
problems in this paper, which is treated in Sec. VI.

We model the motion capabilities of each agent Ai, i ∈ I
on the environment graph E using a transition system:

Ti = (V, v0i
,→i,Π,�i), i ∈ I, (3)

where v0i
∈ V is the initial location of Ai, →i⊆ V × V is

a relation satisfying →i⊆→E ∪v∈V {(v, v)}, Π = Σ ∪ {ε},
ε is the empty request, and �i⊆ V × Π is a relation where
(v, ε) ∈�i,∀v ∈ V and (v, σ) ∈�i, σ ∈ Π iff (v, σ) ∈ loc.

In other words, the motion of robot Ai is restricted by the
relation →i, which captures motion (actuation) constraints
in addition to →E . The locations of the requests in the
environment are captured by relation �i. As it will become
clear later, each vertex satisfying ε captures that a robot can
pass through a vertex without servicing any request.

Definition 6: A motion and service plan (MS plan) for the
robot Ai, i ∈ I is a word msi ∈ (V ∪Σi)

∗ that satisfies the
following conditions: (1) msi(1) = v0i , (2) if msi(j) ∈ Σi,
then msi(j−1) ∈ V and (msi(j−1),msi(j)) ∈ loc,∀j > 1
and (3) if msi(j) ∈ V and msi(j − 1) ∈ V , then (msi(j −
1),msi(j)) ∈→i,∀j > 1.

The semantics of an MS plan is as follows. A vertex entry
msi(j) ∈ V means that the corresponding vertex should
be visited. A request entry msi(j) ∈ Σi means that robot
Ai should service request msi(j) at vertex msi(j − 1).
Before servicing request msi(j) ∈ Σi, the robot needs to
arrive at vertex msi(j − 1) ∈ V , where msi(j) occurs (i.e.
(msi(j − 1),msi(j)) ∈ loc). Wait-and-leave protocol need
to be used for synchronization on shared requests. A shared
request entry msi(j) ∈ Σi where |Imsi(j)| > 1 following
a vertex entry msi(j − 1) ∈ V triggers a wait-and-leave
protocol: while at msi(j − 1), robot Ai broadcasts request
msi(j) and listens for broadcasts of msi(j) from all agents
Aj , j ∈ Imsi(j)\{i}. When all these are received, Ai moves
to the next vertex specified in msi(j+1). We say that a word
wi ∈ Σi

∗ can be implemented by the robot Ai if there exists
a MS plan msi such that msi �Σi= wi.

Given a set of MS plans {msi, i ∈ I} for the robotic
team, there may exist many possible sequences of requests
serviced by the team due to parallel executions of individual
robots (we do not assume that we know the time it takes for
each robot to service requests). For a given set of MS plans,
we denote

LteamMS ({msi, i ∈ I}) :=‖i∈I {msi �Σi
}, (4)

(Def. (4)) as the set of all possible sequences of requests (i.e.
language over Σ) serviced by the team of robots Ai while
they follow their individual MS plans msi. For simplicity of
notations, we usually denote LteamMS ({msi, i ∈ I}) as LteamMS

when there is no ambiguity. We say that the motion of the
team with MS plans {msi, i ∈ I} satisfies a specification
given as an RE φ over Σ if LteamMS 6= ∅ (see Remark 1) and
all words in LteamMS satisfy φ (i.e. LteamMS ⊆ L(A), where A
is an FSA accepting only the words satisfying φ).

Remark 1: A deadlock may occur when LteamMS = ∅. By
the definition of product of languages, this will happen when
there exists no word w ∈ Σ∗ such that w �Σi

= msi �Σi

,∀i ∈ I . In practice, the case that LteamMS = ∅ corresponds to
a scenario where one (or more) agent waits indefinitely for
other agents to service a request σ that is shared among these
agents. For example, if a robot Ai that shares a request σ
with another robot Aj chooses to service σ while Aj chooses
not to service σ, then Ai will be stuck in a “deadlock” state
and wait indefinitely. When such a deadlock scenario occurs,
the motion of the team does not satisfy the specification.

Given a MS plan, a robot generates a control and com-
munication strategy, which is a finite sequence of control
primitives, interrupts, and communication protocols. To guar-
antee the uniqueness of this strategy, we assume that each
robot is equipped with a set of motion primitives (feedback
controllers), such that the selection of a motion primitive at
a vertex uniquely determines the next vertex, given that the
robot is properly initialized and the history of visited vertices
is known. In other words, the robot Ai, i ∈ I can follow any
run of Ti. We are now ready to formulate the main problem:

Problem 1: Given a team of robots Ai, i ∈ I with motion
capabilities Ti and communication constraints C on a graph
E , a set of service requests Σ, a task specification φ in the
form of an RE over Σ, a distribution ∆ of requests over the
robots, find a set of MS plans {msi, i ∈ I} such that the
corresponding motion of the team satisfies φ.

IV. SYNTHESIS OF INDIVIDUAL STRATEGIES

A. From global to local specifications

Our approach proceeds with the conversion of the RE φ
over Σ to a global FSA A = (Q, q0,Σ,→, F ) with input
alphabet Σ, which accepts exactly the language over Σ that
satisfies φ. To find individual (local) task specifications for
each robot according to the distribution ∆, we draw inspira-
tion from the emerging area of distributed formal synthesis
[10]. Our goal is to construct a set of local specifications
in the form of FSAs over Σi, i ∈ I , such that when they
synchronize, they are equivalent to the global specification
represented by A. Specifically, we consider the following
problem:

Problem 2: Given a global FSA A = (Q, q0,Σ,→, F )
and a distribution ∆ = {Σi, i ∈ I} of the requests over the
robots, construct a set of local FSAs {Ai = (Qi, q0i,Σi,→i

, Fi), i ∈ I} such that L(A) = L(‖i∈I Ai).
Note that Prob.2 has a solution iff L(A) is a product lan-

guage [14]. Moreover, using the characterization of product
languages (Def. 4), the solution to Prob. 2 is a set of local



FSAs {Ai, i ∈ I} such that L(A) �Σi
. We can check if

L(A) is a product language by applying an extension of the
approach proposed in [14], which reduces the problem to the
(non-)reachability problem for 1-safe Petri nets [15].

If a solution to Prob. 2 (i.e. {Ai, i ∈ I}) exists, then for
any set of words {wi ∈ L(Ai), i ∈ I}, we have ‖i∈I {wi} ⊆
L(A). Therefore, these sets of words {wi, i ∈ I} can be used
to generate a solution to Prob. 1. However, we also need
to ensure that (1) {wi, i ∈ I} can be implemented by the
robots Ai, (2) the communication constraint C is satisfied
by the team of robots (i.e. the robots need to communicate
to service a shared request), and (3) the set of MS plans
{msi, i ∈ I} generated from {wi, i ∈ I} satisfies LteamMS 6= ∅
(i.e. ‖i∈I {wi} 6= ∅) (see Remark 1). We show how to satisfy
these requirements in Secs.V and VI.

V. CONSTRUCTION AND REDUCTION OF
PRODUCT AUTOMATON Pi

To find the solution to Prob. 1, we need to construct a
product automaton Pi that captures all the words wi ∈ L(Ai)
that can be implemented by the robot Ai (i.e. wi can be
used to obtain a MS plan msi such that msi �Σi= wi). We
present an approach inspired by model checking techniques
[3], which takes as input a local FSA Ai, a transition system
Ti (Eqn. 3), and returns a product automaton Pi. Then,
a reduced version Ri of Pi is constructed, which will be
further used in the next section to generate a set of MS
plans such that the corresponding motion of the team satisfies
the communication constraints and it is deadlock-free (in the
sense described in the previous section).

To construct Pi, we first construct a new FSA Âi by adding
a new action ε and self-transitions (q, ε, q) to each state q ∈
Qi. It is important to note that these self transitions do not
affect the semantics of FSA Ai since ε means no request is
served by robot Ai. Given a word w accepted by the new
FSA, we can obtain a word wA = w �Σi

accepted by Ai.
The FSA Âi, i ∈ I , can now be defined as:

Âi = (Q̂i, q̂0i , Σ̂i, →̂Ai , F̂i), (5)

where Q̂i = Qi, q̂0i
= q0i

, Σ̂i = Σi ∪ {ε}, →̂Ai
=→Ai

∪q∈Qi(q, ε, q), and F̂i = Fi.
By noting that the set of inputs Σ̂i of Âi is a subset of the

observations Π of Ti, we can construct the product automaton
Pi = Ti × Âi. A transition (v, q)

σ−→P (v′, q′) of Pi exists
iff (v, v′) ∈→i and request σ occurs at vertex v. Transitions
with input ε mean that a robot is moving from v to v′ (v may
be equal to v′) without servicing any request. According to
Def. 5 and the accompanying text, Pi will accept exactly the
runs of Ti satisfy the words accepted by Âi. In particular, this
implies that for i, i ∈ I , there exists a run of Ti satisfying a
word wi ∈ L(Ai) iff Pi has a nonempty language. Moreover,
this run of Ti and the corresponding word wi can be used
to generate a MS plan for Ai.

Next, we introduce a reduced version Ri of Pi constructed
above, whose accepted runs can always be refined to obtain
runs accepted by Pi. The main idea behind the reduction is
that individual requests can (and should) be serviced by a

robot on its own; only shared requests require communica-
tion. Each Ri will be composed of “collapsed” minimal paths
(with respect to possible costs associated to the transitions
of Ti) corresponding to individual requests, and transitions
relating to shared requests, which have to satisfy the commu-
nication constraints. In Sec. VI, we approach this problem
through a synchronization process. Mapping each Pi to an
Ri keeps the synchronous product at a manageable size.

To construct the reduced automaton Ri for robot Ai, we
keep the initial state of Pi and all the states and transitions
that are related to shared requests. We say that states qPi

,
q′Pi

and transition (qPi , σ, q
′
Pi

) are related to shared requests
if (qPi , σ, q

′
Pi

) ∈→Pi and |Iσ| > 1. To preserve the connec-
tivity of Pi in Ri, we check if paths with only independent
requests exist between remaining states. If more than one
such path exists, we can use Dijkstra’s algorithm to find the
shortest path. If such a path exists, we say there is a transition
between the corresponding states qRi and q′Ri

in Ri, and
the input of this transition is denoted as path(qRi

, q′Ri
). We

denote the set of all states and the set of all transitions
related to shared requests by QSPi

and →S
Pi

. Moreover, we
can reduce the number of accepting states and generate a
subset of accepting states denoted as F ′Pi

by applying the
following two steps: (1) for each remaining state which is
not an accepting state, we check if there exist accepting states
that can be reached from this state by paths including only
independent requests, and (2) if more than one paths exist, we
choose the path with the lowest cost and the corresponding
accepting state and add it to F ′Pi

. Formally, the reduced
product automaton Ri for robot Ai, i ∈ I is defined as:

Ri = (QRi
, q0Ri

,ΣRi
,→Ri

, FRi
) (6)

where QRi = {q0Pi
} ∪ F ′Pi

∪ QSPi
, q0Ri

= q0Pi
,

ΣRi
= ΣSi ∪q,q′∈QRi

{path(q, q′)}, →Ri
=→S

Pi

∪q,q′∈QRi
{(q, path(q, q′), q′)}, and FRi

= F ′Pi
∪(FPi

∩QSPi
).

VI. CONSTRUCTION OF SATISFYING MS PLANS

To complete the solution to Prob. 1, we need to find
{msi, i ∈ I}, such that the corresponding motion of the
team satisfies the global specification and the communication
constraints C. Given an msi, robot Ai services independent
requests regardless of the behaviors of other robots. To ser-
vice shared requests, it needs to cooperate with other robots.
All possible motions of the team with synchronizations on
shared requests can be captured by the synchronous product
(SP) of the reduced automata Ri, i ∈ I . To make sure that the
motion of the team satisfy C, we need to take into account
these constraints in the SP. Finally, we find a run accepted
by the SP, map it into a run accepted by Pi, and then use it
to generate an MS plan for robot Ai.

We now describe the above ideas in more details. Given
C (Eqn. 2), we introduce the concept of communication
components for all shared requests. We denote Ck as the
kth connected component of graph C. We can compute all
connected components of graph C in linear time using either
breadth-first search or depth-first search. For each shared
request σ, we define Cσk := {v ∈ Ck | (v, σ) ∈ loc}. Recall



that the robots can only communicate when they are at the
vertices of the same communication components and they
need to synchronize before servicing σ.

To construct a SP of the set of reduced automata Ri, i ∈ I
that captures the motion of the team and the communication
constraints, we use Def. 3, to which we impose additional
communication constraints. Assume that there are n agents
in the team and therefore I = {1, . . . , n}. We define the
SP of the reduced automata Ri, i ∈ I with communication
constraints C as

Pg = (Qg, q0g ,Σg,→g, Fg) (7)

where Qg = QR1
×. . .×QRn

, q0g
= (q0R1

, . . . , q0Rn
), Σg =

∪ni=1ΣRi , and Fg = FR1× . . .×FRn . The transition relation
→g⊂ Qg ×Σg ×Qg is defined by (qg, σg, q

′
g) ∈ →g , iff (1)

for all shared requests σg: qg[i]
σg−→i q

′
g[i] and ∃Cσg

k , v[i] ∈
Cσg

k , for all i ∈ Iσg , and qg[i] = q′g[i], for all i /∈ Iσg ,
and (2) for all σg which are optimized paths generated in
Sec. V, qg[i]

σg−→i q
′
g[i] if this optimized path belongs to the

reduced automaton Ri and qg[i] = q′g[i] otherwise, where
qg[i] denotes the ith component of qg and v[i] denotes the
second component of qg[i] = (qi, vi).

In other words, the communication product Pg captures
the synchronization of a team of robots, while making sure
that the robots can communicate before servicing shared
requests. The configurations in which robots occupy dis-
connected vertices in the communication graph C before
servicing shared requests are excluded. The possible motions
of the team for all shared requests and optimized paths are
modeled by the transition relation →g . A transition with
a shared request in Pg occurs when all robots owning σg
synchronously take allowed transitions. A transition with
input σg that is an optimized path in Ri only changes the
state of robot Ai without affecting other robots.

We then find an accepted word wg = wg(1) . . . wg(m)
of Pg and refine it to obtain a set of MS plans as follows.
We first restore the vertex and service entries by replacing
all the optimized paths with the sequence of corresponding
vertices and independent requests. Then, for each shared
request wg(l), 1 ≤ l ≤ m, we insert a sequence of vertices
v[i] before wg(l), where i ∈ Iwg(l). We denote the obtained
word as wo. Finally, we obtain an MS plan msi for each
robot Ai simply by deleting all the requests and vertices from
wo which are not related to Ai. Note that msi �Σi is equal to
wo �Σi , which is accepted by Ai. Since L(‖i∈I Ai) = L(A),
LteamMS ⊆ L(A). Moreover, since wo �Σ ∈ LteamMS , LteamMS 6= ∅.
Hence, the motion of the robotic team with the obtained MS
plans {msi, i ∈ I} satisfies the global specification.

VII. AUTOMATIC DEPLOYMENT IN THE RULE

In this section, we show how our solution to Prob. 1 can
be immediately used to deploy a team of robots from a rich
specification about service requests occurring in a miniature
city. Our Robotic Urban-Like Environment (RULE) shown in
Fig. 2 is a collection of roads, intersections, and parking lots,
which are connected following a simple set of rules, e.g., a

Fig. 2: The topology of the city for the case study from Sec. VII
and the road, intersection, and parking lot labels

road connects two (not necessarily different) intersections.
Each intersection has traffic lights that are synchronized in
the usual way. Each parking lot consists of several parking
spaces, where each parking space can accommodate exactly
one car, and each parking lot has enough parking spaces to
accommodate all the robots at the same time. The city is
easily reconfigurable through re-taping and re-placement of
the wireless traffic lights at the intersections.

The robots are Khepera III miniature cars. Each car can
sense when entering an intersection from a road, when
entering a road from an intersection, when passing in front of
a parking lot, when being correctly parked in a parking space,
and when an obstacle is dangerously close. Each car can
distinguish the color of a traffic light and different parking
spaces in the same parking lot. All the cars can communicate
through Wi-Fi with a desktop computer and with other cars.

Robot deployment is achieved through a user-friendly
graphical interface. The image of the city obtained from
four overhead cameras, which are connected to the desktop
computer, is converted into a schematic representation. La-
bels are automatically generated for roads, intersections, and
parking spaces and presented to the user, who can specify
service requests, their locations, and a task as an arbitrary
regular expression over the service requests. The desktop
computer performs all the computation and sends the control
strategy to the robots through Wi-Fi. Then, the robots execute
the task autonomously by interacting with the environment
and by communicating with each other, if necessary. The
user has the option to simulate the team deployment before
trying it on the actual platform (see hyness.bu.edu/rule/ for
implementation details).

Modeling RULE using the framework described in Sec.
III proceeds as follows. The set of vertices V of the envi-
ronment graph E is the set of labels assigned to the roads,
intersections, and parking lots (see Fig. 2). The edges in
→E show how these regions are connected. We assume that
communication is only possible when both of the robots park
in the same parking lot, or when one of the robots parks
in P1 and the other one parks in P2. In other words, the
edges of the communication graph C are given by EC =
{(P1, P1), (P2, P2), (P3, P3), (P4, P4), (P5, P5), (P1, P2),
(P2, P1)}. We can then calculate C1 = {P1, P2}, C2 =



{P3}, C3 = {P4} and C4 = {P5}.
The motion capabilities of the (identical) robots are cap-

tured by a transition system Ti (Eqn. (3)). Note that, in
reality, each vertex of Ti has associated a set of motion
primitives, and each transition is triggered by a Boolean
combination of interrupts. Note that, by selecting a motion
primitive available at a vertex, the robot can correctly execute
a run of Ti, given that it is initialized on a road. Indeed,
only one motion primitive (follow road) is available on a
road. At an intersection, the choice of a motion primitive
uniquely determines the next vertex given the road that the
robot entered the intersection from. For example, there are
four motion primitives available at I1: turn right, turn left,
U turn, and go straight. By selecting turn right at I1, the
robot goes to R1r given that it came from R3r. This justifies
our assumption from Sec. III that runs of Ti can be executed
by the robots. In other words, MS plans defined in Sec.
III and derived as described in Sec. VI can be immediately
implemented by a robot. It is easy to see that, under some
reasonable liveness assumptions about environmental events
(e.g., the traffic lights will eventually turn green), such a
transition system captures the motion of each robot correctly.

Assume that two robots (cars), labeled as C1 and C2,
are available for deployment in the city with the topol-
ogy as shown in Fig. 2. Assume that the set of service
requests is Σ = {H1, H2, L1, L2, L3}, where Li, i =
1, 2, 3 are “light” requests, which require only one robot,
and therefore should be serviced in parallel, while Hi,
i = 1, 2 are “heavy”, and require the cooperation of the
two robots. Assume that C1 can service L1 and C2 can
service L2 and L3, i.e., the set of requests is distributed
as Σ1 = {L1, H1, H2} and Σ2 = {L2, L3, H1, H2} be-
tween the two robots. Assume that the requests occur at
the parking lots as given by the location relation loc =
{(P1, H1), (P1, L1), (P2, H1), (P2, L1), (P2, L2), (P3, L3),
(P4, H2), (P5, H2)}. From this, we can easily compute
CH1

1 = {P1, P2}, CH2
3 = {P4}, CH2

4 = {P5} and CH1
2 =

CH1
3 = CH1

4 = CH2
1 = CH2

2 = ∅.
Finally, assume that the global task specification is to first

service H1, then both L1 and L2 in an arbitrary order, then
H2, and finally both L1 and L3 in an arbitrary order. The
specification translates to the following RE:

H1 (L1L2 + L2L1) H2 (L1L3 + L3L1).

By applying the method described in Sec. IV, we find
that this global specification is a product language. The
local specifications for car C1 and C2 are H1L1H2L1 and
H1L2H2L3, respectively. Two accepting MS plans are ms1 :
R1lI1R6rP1H1P1L1R6rI4R8lP5H2R8lI3R4lI2R3rP2L1

and ms2 : R2lI2R3rP2H1P2L2R3rI1R5rI4R8lP5H2R8lR8r

I4R6lP3L3.
The above MS plans are then mapped to control and

communication strategies (Sec. III) through the use of motion
and communication primitives, and interrupts as described
above. The deployment of the robots on the RULE platform
is shown in the video accompanying the paper, which is also
available at hyness.bu.edu/rule/media.html. We also include

footage of the RULE simulator for another case study in the
accompanying video.

VIII. CONCLUSION

We presented a framework for automatic deployment of
a robotic team from a specification given as a regular
expression over a set of service requests occurring at known
locations of a partitioned environment. We assume that
several requests can occur at each region, and the robots are
subject to environment-induced communication constraints.
Given the robot capabilities to service the requests, and the
possible cooperation requirements for some requests, we first
determine whether the specification is distributable among
the robots, and generate individual specifications in the form
of finite state automata and synchronization rules among
the automata. We use these to generate a set of reduced
product automata, which we then employ to look for motion
and service plans that satisfy the communication constraints.
These plans are eventually mapped to robot control and
communication strategies. We illustrate the method with
experimental and simulation results in our Robotic Urban-
Like Environment (RULE).
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