
A Livelock Freedom Analysis for Infinite State

Asynchronous Reactive Systems

Stefan Leue, Alin Ştefănescu, and Wei Wei

Department of Computer and Information Science
University of Konstanz, D-78457 Konstanz, Germany

Email: {Stefan.Leue|Alin.Stefanescu|Wei.Wei}@uni-konstanz.de

Abstract. We describe an incomplete but sound and efficient livelock
freedom test for infinite state asynchronous reactive systems. The method
abstracts a system into a set of simple control flow cycles labeled with
their message passing effects. From these cycles, it constructs a homoge-
neous integer programming problem (IP) encoding a necessary condition
for the existence of livelock runs. Livelock freedom is assured by the in-
feasibility of the generated homogeneous IP, which can be checked in
polynomial time. In the case that livelock freedom cannot be proved, the
method proposes a counterexample given as a set of cycles. We apply an
automated cycle dependency analysis to counterexamples to check their
spuriousness and to refine the abstraction. We illustrate the application
of the method to Promela models using our prototype implementation
named aLive.

1 Introduction

The main characteristic of a concurrent reactive system [17] is that of maintain-
ing an ongoing activity of exchanging and processing information. One salient
property that any reactive system must satisfy is deadlock freedom, i.e., the exe-
cution of the system is non-blocking. However, a system may be free of deadlock
and yet it does no progress in executing its tasks. Such a situation is referred to
as livelock. Freedom from livelock is highly desirable as it is important to ensure
that the execution of a system is not only continuous but also meaningful.

Explicit state model checking techniques are mostly used to verify livelock
freedom for finite state systems [4, 11, 9]. However, these techniques suffer from
the state explosion problem especially when applied to asynchronous concur-
rent systems. Such systems usually possess a large global state space due to the
combinatorial interleaving of the executions of local processes. On the contrary,
integer programming (IP) based verification techniques does not rely on the enu-
meration of global states and thus avoid the state explosion problem. However,
the existing IP based techniques focus on the analysis of synchronous systems.

In this paper we propose an incomplete analysis method for livelock freedom
of asynchronous reactive systems, relying on the observation that control flow
cycles play a central rôle in the setting of reactive systems with a “forever run”

behavior. We consider asynchronous message-passing as the underlying commu-
nication paradigm of the systems that we analyze. The livelock freedom test is
reduced to the solving of a homogeneous integer programming problem, which
can be done in polynomial time. In case the incomplete analysis method that
we propose cannot establish livelock freedom we use a heuristic abstraction re-
finement method to improve the accuracy of our analysis. Since the size of the
communication channels is not relevant to the analysis, we can assume they are
infinite, meaning that our method can verify infinite state systems that cannot
be addressed for instance via an explicit state exploration.

The paper is structured as follows. Section 2 introduces the running example
described in Promela. Section 3 properly defines the livelock freedom problem,
while Section 4 presents the core idea of checking livelock freedom using integer
linear programming. Section 5 gives the cycle refinement procedure. We conclude
in the last three sections with experimental results, related work, respectively
conclusions and future work. Some of the details are placed in the appendix.

2 Promela

We briefly introduce into the Promela modeling language for concurrent systems
and present the running example of this paper.

Promela is the input language of the SPIN explicit state model checker [11].
It has been successfully used for the modeling and analysis of many concurrent
systems [12, 4]. The Promela language supports asynchronous communication as
well as synchronous rendez-vous communication and synchronization via shared
variables. In the scope of this paper, we concentrate on asynchronous communi-
cation and exclude the use of any other types of communication that Promela
offers.

mtype = {req, ack, rel};

chan c_s[2] = [1] of {mtype};
chan s_c[2] = [1] of {mtype};

proctype client(int index) {
do
:: c_s[index]!req;

s_c[index]?ack ->
// do some computation here
c_s[index]!rel;

od;
}

proctype server() {
do
:: c_s[0]?req -> s_c[0]!ack; c_s[0]?rel;
:: c_s[1]?req -> s_c[1]!ack; c_s[1]?rel;
od

}

init {
run server();
atomic {

run client(0); run client(1);
}

}

Fig. 1. The running example in Promela.

Figure 1 shows a simple Promela model that will be used throughout the
paper as a running example. The model consists of two instances of the client
process type and one instance of the server process type. Each client client[i]
exchanges messages with the server over two exclusive communication buffers

c s[i] and s c[i]. The types of exchanged messages are defined as elements of
the special enumeration type mtype. Each client performs a loop: it first sends a
resource request (req) to the server; after it receives an acknowledgment (ack)
from the server, it performs some local computation and then sends back a
resource release notification (rel). The server chooses nondeterministically a
request to handle and grants the resource to one client, using an ack message,
only after it receives a release notification from the other client.

The choice of the Promela language in the context of this paper is motivated
by reasons of convenience. Promela possesses the salient features of most asyn-
chronous concurrent system models, and a large number of models are publicly
available. However, Promela was designed to be used for finite state verification
and hence possesses some language features to ensure this property, such as lim-
iting data to finite domains and requiring message buffers to have finite capacity.
However, our livelock freedom analysis is applicable to both finite and infinite
state systems which is why we simply ignore the respective Promela constructs.
To facilitate our analysis we also assume that it is known at compile time how
many Promela processes of which type will be instantiated at run time. In Sec-
tion 4.3 we show that the soundness of our analysis does not rely on specifics of
the Promela language, which is why we put forward that its application to other
modeling and programming languages for asynchronous concurrent systems can
easily be accomplished.

3 Livelock Freedom

Livelock has been defined variously in different contexts [10]. For concurrent
systems, livelock often means “individual starvation”: a process is prevented from
performing some particular actions [17]. These actions are normally intended to
make progress, deliver outputs, or respond to the environment and other peer
processes. We call such an action a progress action. In the running example, a
progress action of a client is to do the local computation after it receives an
acknowledgment. In this paper we follow this meaning of livelock and give its
definition in the setting of reactive systems.

We define that a livelock for a reactive system is an infinite run in which only
non-progress actions are executed after a certain point of the run, i.e., all the
progress actions are repeated only a finite number of times. If a reactive system
has no livelock runs, then it is livelock free.

Both livelock and deadlock result in a lack of progress in the system. They are
sometimes not distinguishable from a practical point of view. However, these two
concepts are used to refer to two different sources of non-progress. Furthermore,
from a formal point of view, they belong to two different types of properties:
deadlock freedom is a safety property while livelock freedom is a liveness prop-
erty. As a consequence, the techniques used to check these two properties are
radically different. That is why we make a clear distinction of deadlock and
livelock in our definition: a finite run, in particular a deadlocked run, is not a
livelocked run. In our analysis, we focus on checking the absence of livelock and

ignore the existence of deadlocks: if a system is proved to be livelock free using
our method, it may still have deadlocks.

The SPIN model checker distinguishes in a similar fashion between deadlock
and livelock [11]. In Promela models, “progress” labels are attached to progress
actions. SPIN then checks livelock freedom by checking the absence of non-
progress global cycles by a nested depth first search in the global state space.
However, such a state enumeration approach suffers from the state explosion
problem and can only deal with finite state systems. In Appendix A we prove
that livelock freedom is undecidable for infinite state systems with unbounded
communication buffers.

4 Livelock Freedom Analysis

We propose an incomplete but sound method to prove livelock freedom for asyn-
chronous reactive systems based on integer programming solving. The incom-
pleteness is a consequence of the undecidability of the livelock freedom problem.

We outline the method as follows. Given a reactive system and a set of
progress actions, we first carry out a series of abstractions that transforms the
system into a set of independent control flow cycles labeled with their message
passing effects. A cycle is a progress cycle if it contains one of the progress
actions, and we identify the set of all the progress cycles. We give a necessary
condition which ensures the existence of a livelock run, i.e., an infinite run in
which all the progress cycles are repeated only a finite number of times. We
translate this condition into a homogeneous integer programming problem (IP).
If the resulting IP problem has no solution then the necessary condition cannot
hold, which implies livelock freedom. On the other hand, if the resulting IP has
solutions then the system may or may not be livelock free, which corresponds to
the incomplete side of our test.

4.1 Abstraction

In asynchronous reactive systems, concurrent processes coordinate their actions
via exchanging messages. Thus, the message passing behavior is a major factor
to decide how cycles in the control flow are executed. This observation underlies
the conservative abstraction approach sketched below for our livelock freedom
analysis. The same abstraction steps were also used in our previous work on
buffer boundedness analysis, which are detailed in [14, 13]. In particular [13]
deals with specifics of abstracting Promela models.

Code abstraction. Given the program code of a reactive system we first abstract
from variables, operations on data, the testing of conditions, etc., and retain
only the finite control structure and the message passing behaviour of all pro-
cesses. The resulting system is a system of communicating finite state machines
(CFSM) [22, 1].

Message orders. In the next step, we abstract from the order of messages in
any communication buffer. We use an integer vector to represent how many
messages of a certain type are currently stored in each buffer. Consider the
running example. An integer vector < 1, 0, 3, 2, 4, 6 > denotes that there is 1 req
message in the buffer c s[0], no ack message in s c[0], 3 rel messages in c s[0], 2 req
messages in c s[1], 4 ack messages in s c[1], and 6 rel messages in c s[1]. We also
use an integer vector, called an effect vector, to denote the message passing effect
of a transition. A positive component in an effect vector corresponds to message
sending, and a negative component corresponds to message consumption.

Activation conditions and dependencies of control flow cycles. In this step, we
assume that (1) any control flow cycle can be reached from the initial config-
uration of the system and that (2) these cycles are totally independent from
one another. We detect all the local control flow cycles in each process of the
system. We consider only simple cycles, i.e., cycles that cannot be decomposed
into smaller cycles. For each cycle, we compute the sum of the effect vectors of
all the transitions along the cycle. The resulting system is a set of independent
control flow cycles with their effect vectors. In the running example, there are
4 cycles: one from the process client[0], one from client[1], and two from server
given as the two nondeterministic choices within the do loop. Their effect vectors
are, respectively, < −1, 1,−1, 0, 0, 0 >, < 0, 0, 0,−1, 1,−1 >, < 1,−1, 1, 0, 0, 0 >,
and < 0, 0, 0, 1,−1, 1 >.

4.2 Determining Livelock Freedom

A reactive system is livelock free if at least one progress cycle can be repeated
infinitely often in any infinite run. Let C1, . . . , Cn be the set of control flow cycles
that we collect from the system, and Cj1 , . . . , Cjm

(j1, . . . , jm ∈ {1, . . . , n}) be
the set of progress cycles. We use ci to denote the effect vector of a cycle Ci.
We use the following IP problem to characterize a necessary condition for the
existence of a livelock run, i.e., an infinite run in which any progress cycle can
be repeated only a finite number of times.

x1c1 + . . . + xncn ≥ 0̄ (1)

x1 + . . . + xn > 0 (2)

xj1 + . . . + xjm
= 0 (3)

xi ≥ 0 for all i (4)

In the above inequalities, we assign an integer variable xi to each cycle Ci to
denote the number of times that it is repeated in a finite segment of a run. These
variables may have only non-negative values as imposed by the inequalities 4.
A particular assignment to all xi’s represents a linear combination of cycle ex-
ecutions. The inequality 1 states that the overall effect of a linear combination
of cycle executions does not consume any messages. Thus, an infinite exclusive

repetition of such a linear combination is possible since it does not run out of
any type of messages. The inequality 2 excludes a trivial combination in which
no cycle is executed at all. The inequalities 1 and 2 give a necessary condition
for the existence of infinite runs. The inequality 3 then excludes any progress
cycle Cji

from a linear combination. Consequently, this condition excludes any
progress cycle from being repeated infinitely often in any infinite run. The argu-
ments in Section 4.3 ensure that the IP problem defined by the inequalities 1–4
gives indeed a necessary condition for the existence of livelock runs.

If the IP problem has no solutions, then the necessary condition cannot hold.
In such a case, at least one progress cycle Cji

has to be repeated infinitely often
in any infinite run. This proves livelock freedom for the system. On the other
hand, if the IP problem has solutions, then we do not know whether the system
is livelock free since the IP problem gives a necessary but not sufficient livelock
existence condition.

Consider the running example. Let the only progress action be the local
computation of one client, say client[0]. We use x1 to correspond to the cycle
in client[0], x2 to the cycle in client[1], and x3 and x4 to the two cycles given
as the two nondeterminstic choices within the do loop in server. The resulting
livelock freedom determination IP problem is given as below.

−x1 + x3 ≥ 0 (5)

x1 − x3 ≥ 0 (6)

−x1 + x3 ≥ 0 (7)

−x2 + x4 ≥ 0 (8)

x2 − x4 ≥ 0 (9)

−x2 + x4 ≥ 0 (10)

x1 + x2 + x3 + x4 > 0 (11)

x1 = 0 (12)

x1, x2, x3, x4 ≥ 0 (13)

The inequalities 5–10 restrict the aggregate effect vector of a linear combi-
nation to be positive1. The inequality 11 excludes an all-zero combination. The
inequality 12 excludes the only progress cycle in client[0]. There is one solution
satisfying these inequalities: x2 = x4 = 1 while assigning 0 to all other variables.
As a consequence we cannot prove livelock freedom for the running example.
However, we can construct a counterexample from the above obtained solution
as a collection of cycles whose variable receives a nonzero value in the solution.
A manual check of the counterexample reveals a real livelock scenario in which
the server decides to accept only requests from client[1]. Note that due to the
overapproximating abstractions that we use, a counterexample corresponds not
always to a valid execution of the system. In such a case, the counterexample is
called spurious. An automated method to determine spurious counterexamples
will be discussed in depth in Section 5.

To eliminate the source of livelock that we uncovered above, we modify the
model by removing the nondeterministic behavior of the server. We fix an order
in which the server alternatively handles requests from the two clients as follows:

1 A vector is positive if all its components are non-negative.

proctype server() {
do
:: c_s[0]?req -> s_c[0]!ack; c_s[0]?rel;

c_s[1]?req -> s_c[1]!ack; c_s[1]?rel;
od

}

The resulting IP problem for the revised model, given below, has no solutions,
which implies livelock freedom.

−x1 + x3 ≥ 0 (14)

x1 − x3 ≥ 0 (15)

−x1 + x3 ≥ 0 (16)

−x2 + x3 ≥ 0 (17)

x2 − x3 ≥ 0 (18)

−x2 + x3 ≥ 0 (19)

x1 + x2 + x3 ≥ 1 (20)

x1 = 0 (21)

x1, x2, x3 ≥ 0 (22)

Complexity of the livelock freedom test. Given a reactive system, the size of the
constructed IP problem is linear in the number of message types and in the
number of simple local control flow cycles. The number of simple cycles may
be exponential in the size of the control flow graph. However, in practice the
control flow graph extracted from the Promela code of a process is sparse, and
we observed that the number of simple cycles is usually polynomial.

Furthermore, the IP problem that our method constructs is homogeneous,
i.e., the right hand side of each inequality in the problem is 0. This homogeneous
IP problem can be solved in polynomial time as follows. We solve the linear
programming version of the IP problem to obtain a rational solution. This can
be done in polynomial time [19]. If we obtain a rational solution, we can easily
construct an integer solution by multiplying each component in the rational
solution by the least common denominator of all the components.

4.3 Soundness Proof

In the soundness proof we use the following proposition, whose proof can be
found in Appendix B.

Proposition 1. Let S be a CFSM system and C a subset of control flow cycles
in S. Suppose that there exists no positive linear combination of effect vectors
of cycles in C. Then, for any infinite execution in which only cycles in C are
executed, the number of messages in all the communication buffers is always
bounded.

Theorem 1 (Soundness). If we prove livelock freedom for a reactive system
using the method described in Subsection 4.2, then the system is indeed livelock
free.

Proof. Consider a reactive system for which we use our method to prove livelock
freedom. The first abstraction step constructs a CFSM from the original system

in a conservative way in that it preserves the existence of livelock runs. Thus, if
the CFSM is livelock free, then the original system is also livelock free.

Assume that the reactive system is proved to be livelock free. Then, in the
corresponding CFSM there exists no positive linear combination of effect vectors
of non-progress cycles (as there is no solution to the corresponding IP problem
described by the inequalities 1–4). By Proposition 1, taking C to be the set of
all non-progress cycles, we obtain that the number of messages in each commu-
nication buffer is bounded if only non-progress cycles are executed.

We prove that the CFSM is livelock free, which implies livelock freedom for
the original system. We assume by contradiction that the CFSM has a livelock
run r. In r all the progress cycles are repeated only a finite number of times.
Then, there exists a particular point of time t in r after which only non-progress
cycles are executed. As discussed above, following Proposition 1, the number of
messages in each communication buffer must always be bounded after t in r. Note
that any state machine in the CFSM has only finitely many local states. Thus,
there will be only finitely many reachable configurations of the CFSM after t in
r. Furthermore, because r is an infinite run, there must be two distinct points
of time t′ and t′′ after t at which the CFSM reaches one same configuration.
The finite segment of execution between t′ and t′′ can be represented as a linear
combination of executions of non-progress cycles. The aggregate effect vector of
this segment is however an all-zero vector. This contradicts the previous claim
that no linear combination of effect vectors of non-progress cycles is positive. �

Note that the above proof does not use any assumption about buffer lengths.
Consequently, if a system with unbounded buffers is proved to be livelock free,
then the same system with bounded buffers of predefined lengths is also livelock
free.

5 Counterexample-based Refinements

The abstractions described in the previous section reduce the accuracy of the
analysis, and our method may propose spurious counterexamples. We observed
that the introducing of spurious counterexamples is often caused by the ab-
straction from those conditional statements that determine the repeatability of
control flow cycles. As we will show later, such conditionals enforce dependen-
cies among cycles that have been lost during the abstractions. In [15] we have
proposed a counterexample-based refinement technique based on re-discovering
local dependencies among the cycles of a same process. This technique can be
adopted to the livelock freedom analysis in this paper and will be illustrated on
a simple example. We will also present an improvement to the determination of
cycle dependencies in [15] that is more efficient and precise in practice. We men-
tion that all the techniques used in the refinement procedure are conservative
with respect to livelock freedom.

Cycle Dependency Analysis. The details of the cycle dependency analysis can
be found in [15]. Here we only illustrate the basic idea of the technique on a

(x <= 5)->

ch!msg1;

x++

x++

x=6

ch?msg2

x=0

C1

C2

C3 C4

Fig. 2. Running example of Section 5

simple example. Figure 2 shows the control flow graph of a process in a reactive
system. It contains four cycles C1, C2, C3 and C4. Suppose that none of them
is a progress cycle and that the integer variable x is local. C1 is enabled when
the value of x is no larger than 5. When executed, it sends a message msg1 and
increments the value of x by 1. C1 leads to a spurious counterexample because
the condition x ≤ 5 is omitted during the abstraction, i.e., in the abstraction it
is assumed that C1 can be executed forever without interruption. To exclude this
spurious counterexample, we perform the following cycle dependency analysis.

– We first determine that C1 can be repeated without interruption at most 5
times before the condition x ≤ 5 turns false. However, the determination of
the maximal number of times that a cycle iterates relies on a termination de-
cision which is undecidable. We recently proposed an incomplete automated
termination proving technique [16] that can be easily extended to estimate
cycle iteration counts, complementing the approach described in [15].

– We determine two sets of cycles that C1 depends on. One set consists of
all C1’s neighbors, i.e., cycles that share some common states with C1. In
our example the neighbors are C2 and C3. Another set of cycles that we
determine consists of all the so-called supplementary cycles that, intuitively
speaking, exert a positive effect to enable the execution of C1 again, i.e., to
render the condition x ≤ 5 to become true. As can be easily seen, C1 has
only one such supplementary cycle which is C3. However, in general it is
hard to determine the exact set of supplementary cycles for a given cycle.
Later in this section we will propose a so-called “next door” strategy that
can be used to determine supplementary cycles more efficiently and precisely
in practice.

– The following cycle dependencies can be determined from the above analysis:
every 5 times that C1 is repeated, (1) one of its neighbors has to be executed
at least once; and (2) one of its supplementary cycles has to be executed at
least once.

Refinement. We can easily express the two above determined dependencies using
two linear inequalities. Let ci be the variable corresponding to Ci in the respec-
tive livelock freedom determination IP problem. The inequality c1 ≤ 5(c2 + c3)
describes the first dependency regarding neighbors, and the inequality c1 ≤ 5c3

describes the second one regarding supplementary cycles. These two inequalities
are then added to the livelock freedom determination IP problem, which refines

the abstraction by imposing the discovered cycle dependencies and thus ruling
out the spurious counterexample consisting of only C1.

In [15] we also consider other sources of cycle dependencies than those im-
posed by conditional statements in cycles. We leave out the discussion here due
to limited space.

Next door strategy. In [15] two alternative methods were proposed to determine
supplementary cycles. These methods are either relatively coarse or costly, and
we give an improvement using what we call the “next door” strategy.

Note that, in the example in Figure 2, the incrementation of x in C4 does not
influence the satisfaction of the condition in C1. This is because x is re-assigned
with a constant by C3, a neighbor of C1, on the way back to C1 from C4. Thus,
C4 is not a supplementary cycle of C1. In fact we can see that C1 is isolated by
all its neighbors in that, upon re-entering C1, x is always reset to some constant
by one of its neighbors. In such a case, the satisfaction of the condition in C1

is totally decided by its neighbors, and thus no cycle other than a neighbor is
supplementary to C1.

Given a cycle whose supplementary cycles are to be determined, the next door
strategy will first check whether the given cycle is isolated by all its neighbors.
When this is the case, we can safely restrict the search for supplementary cycles
to the set of its neighbors.

6 Case Studies

We implemented the livelock freedom proving method in a prototype system
named “aLive”, and carried out a few case studies with realistic Promela models
on a Pentium IV 1.60GHz machine with 1GB memory. We also compared the
performance of aLive and the SPIN model checker on each model.

GARP. The Group Address Registration Protocol (GARP) is a network protocol
allowing users to dynamically register to and detach themselves from a multicast
group. A progress action is either for a user to join or leave a multicast group,
or for the system to remove all the users from a group. The Promela implemen-
tation of GARP [18] consists of 7 concurrent processes with 131 local states, 212
local transitions, and 10 communication buffers. SPIN proved livelock freedom
for the model within 56 seconds and visited 5 × 106 global states during the
check. aLive used only 8 seconds to return the same result after 7 abstraction
refinement steps. We contend that this seven fold speedup compared to SPIN
is possible because aLive does not need to visit all reachable global states and
thus avoids the combinatorial state space explosion caused by concurrency that
the verification algorithm of SPIN is subject to. During the verification aLive
identified 29 message types, collected 86 local control flow cycles, and generated
altogether 21 IP problems. During the analysis 7 counterexamples were sug-
gested and aLive automatically determined all of these to be spurious. One of
these spurious counterexamples suggests the following scenario: While no other

process moves on, one process keeps executing a cycle in which it sends a join
message to inform a service process of some user’s decision to join a multicast
group. However, after the message is sent, the user is included in the group, and
the process cannot send another join message. This cycle can be repeated only if
another cycle of the same process has been executed in which the process receives
a message through which the user announces that he is leaving the group. aLive
successfully detected this dependency between these two cycles and refined the
abstraction accordingly.

GSM Handover. We also checked livelock freedom for a model of the Handover
procedure in the GSM protocol. The model is included as an example in the
latest SPIN 4.26 distribution. In this case a progress action is to hand over the
control of communication from one base region to another one. We carefully
revised the original model to remove the use of sending data objects correspond-
ing to communication buffers from one process to another, which is a Promela
language feature that we currently cannot handle. However, the revision does
not change the behavior of the original model. The revised model consists of 6
processes with 49 local states, 62 local transitions, and 7 communication buffers.
For the revised model, SPIN immediately reported an error trail with a length
of 36 steps. aLive also found one counterexample in the first checking iteration
and returned UNKNOWN after it failed to determine spuriousness for the counterex-
ample. The counterexample consists of 6 control flow cycles and indicates the
situation in which a base station is continuously forwarding messages between
a mobile user and the system without handing over the control to another base
region. Guided by this counterexample, we replayed the indicated scenario by
a manual simulation of the original model within exactly 36 steps. Thus, the
counterexample that aLive found is a real counterexample.

CORBA GIOP. Our analysis of the CORBA GIOP [12] protocol revealed a
limitation of the current aLive approach that is rooted in the unavailability of
suitable static analysis methods for global cycle dependencies in the abstrac-
tion refinement loop. aLive found 8 counterexamples during the analysis and
determined spuriousness for all but the last one. The failure on the last coun-
terexample results exactly from the existence of a global cycle dependency that
we cannot currently handle. A manual inspection easily proves the spuriousness
of this counterexample. On the contrary, SPIN proved livelock freedom for the
GIOP model very efficiently.

Analysis of parametric and infinite state models. Note that aLive actually proves
livelock freedom for a class of Promela models that can be parameterized with ar-
bitrary finite communication buffer capacities. SPIN, on the other hand, verifies
only a given model with a fixed finite buffer length setting. As a consequence, if
the buffer lengths specified in a Promela model are increased, SPIN may run out
of memory due to an exponential growth of the size of the global state space and
hence be unable to prove livelock freedom, while aLive is insensitive to the size

of the buffers bounds. Even more, if we assume that the (syntactically inadmis-
sible) omission of buffer bounds in Promela channel declarations is interpreted
as buffers with unbounded capacity, then our aLive analysis extends to the class
of infinite state Promela models.

7 Related Work

Integer programming (IP) based techniques were previously used in the verifi-
cation of concurrent systems [2, 5, 3, 6, 20]. INCA [2] relies on IP to provide an
incomplete but sound method of verifying safety and liveness properties. How-
ever, INCA currently handles only synchronous rendezvous-like communication,
although the theoretical framework is extensible to asynchronous communica-
tion. Furthermore, the analysis in INCA is restricted to control flow structures
whereas our method also takes data into account. Also, the refinements of the
control flow constraints proposed in [20] for INCA are different than the ones
proposed in this paper. The work described in [5] uses a notion of T -invariants
described in constraint programming (a more powerful framework than IP) to
give an NP-complete semi-decision test (“yes” or “unknown”) for LTL liveness
properties on 1-safe Petri nets.

Livelock analysis was also studied in the context of process algebras. Tools
explicitly verifying livelock freedom in the synchronous communication model of
CSP are [7, 21]. Note that our analysis focusses on the asynchronous communi-
cation model and is therefore fundamentally different.

In explicit state model checking, the verification of livelock freedom reduces
to the detection of non-progress cycles using nested [11] or even simple [9] depth
first state space traversals. In fact, any CTL or LTL model-checker is able to
address livelock freedom checking [4], since livelock freedom can be expressed
in both CTL and LTL temporal logics. SPIN [11] checks livelock-freedom of
Promela models (attaching ‘progress’ labels to actions of interest and searching
for non-progress cycles). Verisoft [8] addresses also the livelock freedom issue,
but with a very restricted definition of livelock that is only applicable to finite
executions.

8 Conclusion

In this paper we have presented an incomplete analysis method for the detection
of livelock freedom for asynchronous infinite-state reactive systems. The method
is based on a property conserving abstraction that reduces these systems to a
system of numerical effect vectors. The livelock problem is then encoded into an
integer linear programming problem over these effect vectors. The solvability of
this IP problem answers the question, whether the program is livelock free, or
whether livelock freeness cannot be proven. In the latter case the analysis returns
a counterexample. We have devised automated heuristics to determine spurious-
ness of a given counterexample and to refine the abstraction, when applicable.
We have evaluated the analysis using a number of real-life Promela models that

we subjected to our prototype analysis tool aLive. The analysis together with
the automated refinement in aLive have produced meaningful results. In one
instance our automated counterexample refinement failed, which points at nec-
essary improvements in the underlying static analysis. We have also compared
our analysis with finite-state verification, in particular the SPIN model checker,
and found that aLive performs very favorably. As we have argued, the soundness
of our analyis does not hinge upon finiteness of the underlying model.

Further research aims at investigating how to encode other types of liveness
properties, such as response properties, using effect vector analysis. Furthermore,
we plan to use the counterexamples (linear combination of cycles) produced by
our analysis to guide SPIN in its search for non-progress cycles (livelocks) using,
for instance, as heuristic metric function the distance to a cycle in the counterex-
ample. We also plan to improve our static analysis and extend it to global cycle
dependencies so that impediments to automated abstraction refinement such as
they occurred in GIOP will be eliminated.

Acknowledgments : This work was supported by the DFG-funded research project
IMCOS (Grant No. LE 1342/1-/2). We thank George Avrunin, Javier Esparza
and Keijo Heljanko for their pointers to relevant literature.

References

1. D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of
the ACM, 30(2):323–342, 1983.

2. J.C. Corbett and G.S. Avrunin. Using integer programming to verify general safety
and liveness properties. Formal Methods in System Design, 6(1):97–123, 1995.

3. S. Dellacherie, S. Devulder, and J.-L. Lambert. Software verification based on
linear programming. In Proc. of FM’99, volume 1709 of LNCS, pages 1147–1165.
Springer, 1999.

4. Y. Dong, X. Du, G.J. Holzmann, and S.A. Smolka. Fighting livelock in the GNU
i-Protocol: a case study in explicit-state model checking. Int. Journal on Software
Tools for Technology Transfer (STTT), 4(4):505–528, 2003.

5. J. Esparza and S. Melzer. Model checking LTL using constraint programming. In
Proc. of ICATPN’97, volume 1248 of LNCS, pages 1–20. Springer, 1997.

6. J. Esparza and S. Melzer. Verification of safety properties using integer program-
ming: Beyond the state equation. Formal Methods in System Design, 16(2):159–
189, 2000.

7. FDR2 tool. Formal Systems (Europe) Ltd. http://www.fsel.com.
8. P. Godefroid. Software model checking: The VeriSoft approach. Formal Methods

in System Design, 26(2):77–101, 2005.
9. H. Hansen, W. Penczek, and A. Valmari. Stuttering-insensitive automata for on-

the-fly detection of livelock properties. ENTCS, 66(2), 2002.
10. A. Ho, S. Smith, and S. Hand. On deadlock, livelock, and forward progress. Tech-

nical Report UCAM-CL-TR-633, Cambridge University, Computer Laboratory,
2005. 8 pp. http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-633.pdf.

11. G.J. Holzmann. The SPIN model checker: Primer and reference manual. Addison
Wesley, 2004.

12. M. Kamel and S. Leue. Formalization and validation of the general Inter-ORB
protocol (GIOP) using PROMELA and SPIN. Int. Journal on Software Tools for
Technology Transfer (STTT), 2(4):394–409, 2000.

13. S. Leue, R. Mayr, and W. Wei. A scalable incomplete test for message buffer
overflow in Promela models. In Proc. of SPIN’04, volume 2989 of LNCS, pages
216–233. Springer, 2004.

14. S. Leue, R. Mayr, and W. Wei. A scalable incomplete test for the boundedness of
UML RT models. In Proc. of TACAS’04, volume 2988 of LNCS, pages 327–341.
Springer, 2004.

15. S. Leue and W. Wei. Counterexample-based refinement for a boundedness test
for CFSM languages. In Proc. of SPIN’05, volume 3639 of LNCS, pages 58–74.
Springer, 2005.

16. S. Leue and W. Wei. A region graph based approach to termination proofs. In
Proc. of TACAS’06, volume 3920 of Lecture Notes in Computer Science, pages
318–333. Springer, 2006.

17. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems
– Specification. Springer Verlag, 1992.

18. T. Nakatani. Verification of group address registration proto-
col using PROMELA and SPIN. In Proc. of SPIN’97, 1997.
http://spinroot.com/spin/Workshops/ws97/nakatani.pdf.

19. C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms and
complexity. Prentice Hall, 1982.

20. S.F. Siegel and G.S. Avrunin. Improving the precision of INCA by eliminating
solutions with spurious cycles. IEEE Trans. Software Eng., 28(2):115–128, 2002.

21. SLAP tool (version 0.1): A static livelock analyzer for CSP processes. Webpage:
http://web.comlab.ox.ac.uk/oucl/work/joel.ouaknine/software/slap.html.

22. G. von Bochmann. Finite state description of communication protocols. Computer
Networks, 2:361–372, 1978.

A Undecidability of livelock freedom in our setting

Livelock freedom is proved to be in general undecidable by a simple reduction
from the following problem proved to be undecidable in [1]:

Executability of a message reception in a CFSM with unbounded
buffers:

Instance: A CFSM M and a local state s of M having an outgoing edge
labeled by the receive action ‘?a’

Question: Does there exists a run of M such that the message reception ‘?a’
is executed in state s?

Given M , s, and ?a as above, we construct another CFSM M ′ in such a way
that after the reception ‘?a’, M ′ may to enter in a livelock. More precisely, M ′

is obtained from M by replacing the outgoing edge from s labeled by ?a, by
another edge also labeled by ?a but going to a new local state sL that has a
self-loop sending a special message !aL. Moreover, we add also a new component
with a single state s′L with a self-loop labeled by ?aL (receiving the aL messages).
In the new M ′ we set as progress actions, all actions except !aL and ?aL.

It is now easy to see that the reception ?a is executed in state s of M if and
only if M ′ has a livelock run (involving aL): For the direct implication, let r be
a finite run of M where ?a in state s is eventually executed (we consider the run
r to contain only one such occurrence of ?a, and namely on the last position).
Then, we can simulate the same run r in M ′ and reach the local state sL. At
this point we obtain a livelock by infinitely executing alternations of sends and
receptions !aL and ?aL (the only non-progress actions of M ′). For the reverse
implication, if M ′ contains a livelock, this necessarily involves the aL message,
but this is possible only if state sL is reached, which implies that the reception
?a is executable in s in M ′. From the construction of M ′ upon M , we will also
be able to find a run in M such that ?a is executed in s. �

B Proof of Proposition 1

In the following we denote by [i..j] the set {i, . . . , j} (for i ≤ j) and by x̄ the
n-dimensional integer vector (x1, . . . , xn) ∈ Z

n. For two n-dimensional vectors,
we have x̄ ≤ ȳ iff xi ≤ yi, for all i ∈ [1..n]. Moreover, x̄ < ȳ iff x̄ ≤ ȳ and there
exists i ∈ [1..n] with xi < yi.

Lemma 1. Let {c̄0, . . . , c̄n} be n + 1 vectors of dimension m (with n,m ≥ 1),
i.e., c̄i := (ci1, . . . , cim) for all i ∈ [0..n]. Then, if the following system of linear
inequations has no integer solutions

x1c̄1 + . . . + xnc̄n ≥ 0̄ (23)

x1 + . . . + xn > 0 (24)

xi ≥ 0 for all i (25)

then, there exists an upper bound B such that for all integer solutions of

c̄0 + x1c̄1 + . . . + xnc̄n ≥ 0̄ (26)

x1 + . . . + xn > 0 (27)

xi ≥ 0 for all i (28)

and any k ∈ [1..m],
c0k + x1c1k + . . . + xncnk ≤ B.

Proof. Defining for each k ∈ [1..m] a function fk : Z
n → Z as fk(x1, . . . , xn) :=

x1c1k + . . . + xncnk, we will prove that fk is bounded for any k ∈ [1..m] on the
domain of integer solutions of (26)–(28).

By contradiction, assume that there exists a k ∈ [1..m] such that fk is un-
bounded. This implies that there exists an infinite sequence {x̄i}i≥1 of integer
solutions of (26)–(28) such that limi→∞ fk(x̄i) = +∞ (the limit cannot be −∞
because of (26)).

We first show that without loss of generality, we can assume that the sequence
{x̄i}i≥1 has the property that

for any i < j : x̄i < x̄j and fk(x̄i) < fk(x̄j) (29)

This can be proved using standard mathematical analysis techniques as follows.
Since limi→∞ fk(x̄i) = +∞, we can select an infinite subsequence {ȳi}i≥1 of
{x̄i}i≥1 such that {fk(ȳi)}i≥1 is strictly increasing. Moreover, we can select
{ȳi}i≥1 to be also strictly increasing. This is possible because {ȳi}i≥1 is on
one hand bounded from below by 0̄ following (28), while on the other hand is
an infinite sequence taking fk to +∞. In the following, we replace {x̄i}i≥1 by
{ȳi}i≥1 (for the sake of consistency with the notation in (29)).

Next, we observe the behavior of the increasing sequence {x̄i}i≥1 on the
other functions fk′ , for k′ 6= k. We have the following two possibilities for each
k′ ∈ [1..m] \ {k}:

– {fk′(x̄i)}i≥1 is bounded: In this case, since {fk′(x̄i)}i≥1 is also infinite,
there exists an infinite increasing subsequence {ȳi}i≥1 of {x̄i}i≥1 such that
fk′(ȳi) = fk′(ȳj), for any i, j ≥ 1.

– {fk′(x̄i)}i≥1 is unbounded: Because of (26), {fk′(x̄i)}i≥1 is bounded from
below (by −c0k), so necessarily there exists an infinite increasing subsequence
{ȳi}i≥1 of {x̄i}i≥1 such that fk′(ȳi) < fk′(ȳj), for any i < j (similar to (29)).

From (29) and the above case analysis (applied stepwise for each k′), it is easy
to see that there exists an infinite strictly increasing sequence {ȳi}i≥1 (whose
elements are solutions of (26)–(28)) such that fk(ȳi) ≤ fk(ȳj), for any k ∈ [1..m],
and i < j.

Finally, let us fix two indexes i < j (from [1..m]). Then, for all k ∈ [1..m]
we have fk(ȳi) ≤ fk(ȳj), which implies fk(ȳj) − fk(ȳi) ≥ 0. But since all the
functions fk are linear, we have that fk(ȳj − ȳi) ≥ 0 (*). Moreover, since {ȳi}i≥1

is strictly increasing, ȳj − ȳi > 0̄ (**). Slightly rewriting (*) and (**), we obtain
that ȳj − ȳi is a solution to the system of inequations (23)–(25), which is a
contradiction with the hypothesis of the lemma. �

We prove now Proposition 1 using Lemma 1. Given a CFSM and a subset
of control flow cycles C = {C1, . . . , Cn}, we consider c̄i as the effect vector of
cycle Ci for each i ∈ [1..n]. Moreover, let c̄0 be an upper bound for all the effect
vectors of the all acyclic paths of the CFSM.

First, since there exists no positive linear combination of effect vectors of
cycles in C (from the hypothesis of Proposition 1), the hypothesis of Lemma 1 is
satisfied, which implies that there is a global upper bound for c̄0+x1c̄1+. . .+xnc̄n

for any fixed c̄0 and x̄ := (x1, . . . , xn). This means that there is an upper bound
B on all the message buffers for all executions consisting of an acyclic path
followed by a linear combination of simple cycles.

Secondly, suppose now by contradiction that there exists a run of the CFSM
that strictly exceeds the bound B in one of the buffers and let us denote by r a
finite run that increases the number of messages in one of the buffers to B + 1.
Since r is necessarily composed of an acyclic path and a finite number of simple
cycles (seen as a linear combination of cycles), the effect of r on the message
buffers is bounded by B (according to the above application of Lemma 1), but
this contradicts the previous assumption on r being able to fill B + 1 messages
on one of the buffers. �

