
Chapter 6
Business Information Sector

Sebastian Wieczorek, Vitaly Kozyura, Wei Wei, Andreas Roth and Alin Stefanescu

Abstract Enterprise software helps modern corporates to automate their businesses
in order to run efficiently and economically. We report a story of successful in-
troduction of formal methods to business software development. This deployment
came in three phases: modelling, formal verification and model-based testing. For
each phase, we describe a few representative deployment cases in detail, and discuss
the problems that we encountered and the decisions that we had to make. The work
discussed here was carried out to focus on issues of interest to SAP, the world’s
leading provider of enterprise software.

6.1 Introduction to the Business Sector

Business application software has nowadays become indispensable to businesses
because it provides the backbone and driving force for their activities through au-
tomation. For many areas including manufacturing, supply chains, sales and hu-
man resources, data and services of various organisational units across the entire
company need to be consistently integrated. With complex configuration options
and business processes, it is no wonder that such software systems are very large

Sebastian Wieczorek
SAP AG, Germany, e-mail: sebastian.wieczorek@sap.com

Vitaly Kozyura
SAP AG, Germany, e-mail: v.kozyura@sap.com

Wei Wei
SAP AG, Germany, e-mail: wei01.wei@sap.com

Andreas Roth
SAP AG, Germany, e-mail: andreas.roth@sap.com

Alin Stefanescu
Uni Pitesti, Romania, e-mail: alin.stefanescu@upit.ro

65

DRAFT



66 Sebastian Wieczorek, Vitaly Kozyura, Wei Wei, Andreas Roth and Alin Stefanescu

and complex. Furthermore, business software constantly evolves and adapts to fast
changing business environments and requirements.

In response to these challenges, two important methodologies, namely Service-
Oriented Architecture (SOA) and Model-Based Development (MBD), have been
adopted for business software development in the last decade. The essence of SOA
is to break the monolithic structure of large software into smaller business compo-
nents and exhibit them as services that can be easily composed to meet increasingly
more complex business needs. The development of service-based systems is layered
as follows:

• Development of functional units that encapsulate a basic piece of computation.
• Bundling of functional units into components with the aim of providing

reusable composable services.
• Definition of business processes by composing services to realise end-to-end

business scenarios of enterprises.

MBD documents different aspects of software as models at every development
stage, which enables early prototyping and detection of potential errors to avoid a
drastically more expensive correction later. A software model retains only the de-
tails important to the corresponding design emphasis, and gets rid of any irrelevant
information.

Correct functioning of business software is very important because failures could
cause great financial losses. Formal methods have attracted growing attention for
their capabilities to offer unambiguous semantics and to prove correctness rigor-
ously. Thanks to the rich repository of models already available to us, it becomes
less difficult and makes more sense to apply formal methods to the development of
business software. It is less difficult because models are usually much smaller com-
pared to the final implementation code, so they can be better handled with formal
methods. It makes more sense because, on the one hand, models are used to guide
subsequent development, and therefore their correctness is critical. On the other
hand, models are perfect for deriving tests, since they capture the essence of how
software is supposed to behave. The focus of our deployment of formal methods is
on both formal verification and model-based testing.

One important objective during our deployment is to achieve a high degree of
automation. Ideally, the application of formal methods should be hidden completely
from designers and developers, because in our industry they should not be expected
to understand or master formal methods. The high expense of training required is
only part of the problem. Manual applications of formal methods, such as manual
proofs, are usually very time- and resource-consuming, while the results are often
not reusable due to frequent model changes. This would not only further increase the
cost of software development, but also interrupt or even delay the development pro-
cess to an extent that can no longer be tolerated. Therefore, we need to either make
reasonable trade-offs (e.g., by sacrificing expressibility of modelling languages in
favour of verifiability) or enhance the existing formal methods with improved au-
tomation. Finally, hiding formal modelling behind the surface of the existing MBD

DRAFT



6 Business Information Sector 67

abstractions not only allows for seamless integration with the current development
processes but also makes it easy to re-use the existing model contents.

6.2 Modelling

The early and wide adoption of MBD at SAP resulted in a vast collection of models
that cover almost every aspect of software design, from high-level descriptions of
business processes to low-level behavioural model for business objects. Some mod-
els are described using public standard modelling languages or their variants, and
others using completely proprietary languages. We identified two main challenges
that we needed to address in the modelling phase.

First, even though compared to implementation code, models are small, their size
and complexity could still be overwhelming for a formal analysis tool. To overcome
this issue, we decided to compromise by leaving out certain modelling features that
are deemed either inessential or too expensive to be analysed using formal meth-
ods. We also tried to break down monolithic model structures into smaller com-
ponents/layers in order to reduce difficulties in verification, as seen in the cases
of message choreographies (using layered design) and business processes (using
model-decomposition).

Second, most industrial modelling languages lack formal semantics. For exam-
ple, Business Process Model and Notation (BPMN) has many elements with very
vague and ambiguous interpretations. Direct application of formal methods should
be discouraged even to models whose semantics is more or less clear. Otherwise,
we would get into an unpleasant situation where we need to implement the same
formal method over and over again, each time it is applied to a different modelling
language. Therefore, we decided to translate all models into a common formal lan-
guage in which any future formal analysis would be performed. This has additional
advantage of making it possible to formally capture and verify the relations between
different models. This is particularly desirable because in this way we are able to
guarantee and maintain consistency across different design aspects. In the context
of the DEPLOY project, we decided to use Event-B as the common formal language
because of its powerful tool support by the Rodin platform.

6.2.1 Message Choreography Modelling

At the beginning of our work, we identified a missing layer in the modelling stack.
While there are higher-level models for business processes and lower-level mod-
els for business objects, there are no models to describe message protocols for
communication between business objects. There was static communication infor-
mation, such as service interfaces and message formats, scattered throughout vari-
ous documents and sources. However, there was virtually no documentation about

DRAFT



68 Sebastian Wieczorek, Vitaly Kozyura, Wei Wei, Andreas Roth and Alin Stefanescu

the dynamic aspect of communication, i.e., message sequences that would occur
at runtime. Therefore, we decided to come up with message choreography models
(MCMs) that would provide all this information in a unified and consistent way.
We started with a careful investigation of the state of the art in choreography mod-
elling and matched it with the initial requirements gathered from developers. We
tried using several existing choreography languages, such as WS-CDL and BPMN-
Choreography, to build simple models, and found that they were not suitable for our
purposes. Finally, we adapted an internally used proprietary language for describing
how business components call each other’s services, and replaced business opera-
tion calls with message interactions between components. The result is the MCM
language [15, 9], as shown in Figures 6.1 and 6.2.

An MCM consists of a global choreography model that shows all possible se-
quences of messages exchanged at runtime, and a pair of local partner models that
describe how each communication partner sends or receives messages with addi-
tional local constraints. In addition, for local partner models, we need to specify
a property of the communication channel between partners: whether it is Exactly-
Once (no message duplication, no message loss, but no message order guaranteed),
Exactly-Once-In-Order (message order guaranteed), or something else. The global
choreography model has no information about communication channels, and it is
constructed from the viewpoint of an external observer. The decision in favour of
the two-layer MCM structure was made to reduce verification complexity. Because
the global choreography model is closer to user requirements, we can have more
confidence in their consistency through simulation and testing. Then, we only need
to verify that the local partner models are consistent with the global choreography
models (more on this later), in order to assure that the MCM is consistent with user
requirements.

Fig. 6.1 A global choreography model.

DRAFT



6 Business Information Sector 69

Fig. 6.2 Local partner models.

The resulting concept and the familiarity of its graphical representation soon
gained developers’ support. We built a prototype MCM editor based on SAP’s in-
ternal platform, NetWeaver Development Studio, which includes a graphical mod-
elling framework. We also used the editor as the basis for implementing various
formal verification and model-based testing techniques as plug-ins. Throughout the
course of development, we continuously collected feedback from integration and
testing architects in the field, thus involving potential users at each development
stage. For instance, we extended the basic notion of state to allow for concurrency,
which was an advanced feature needed in certain types of scenarios.

For evaluation purposes, we set up four pilots using real-life integration scenar-
ios from the SAP platform, as described in [16]. The creation of each pilot model
was conducted in two guided sessions that lasted about one hour each. In addi-
tion to that, we conducted another two hours of refinement and consolidation of the
results. After the second session, semi-structured interviews were conducted with
the pilot users. The general response was very positive. The participants perceived
the possibility of formally describing the design as most beneficial, as it significantly
improved communication between distributed development teams of interactive ser-
vices. Furthermore, full integration of the existing modelling content (e.g., interface
and component specifications) into the MCM was appreciated. The graphical mod-
elling approach using a state-based representation was generally perceived as intu-
itive. The above case study showed that it is possible to model randomly chosen
service communications that are part of a real SOA-based product using the MCM.
The results suggest that the MCM is expressive enough to capture the relevant ser-
vice communication.

As mentioned before, MCMs are first translated into Event-B for further formal
analysis and test generation. The details of the translation can be found in [13].
Thanks to the state-based nature of MCMs, they are translated into Event-B in a
quite straightforward fashion by using state variables and expressing transitions as
state variable assignments in event actions. A global choreography model and its
local partner models are translated into two separate Event-B machines. For any in-

DRAFT



70 Sebastian Wieczorek, Vitaly Kozyura, Wei Wei, Andreas Roth and Alin Stefanescu

teraction between two partners in the machine representing the global choreography
model, either the sending event or the receiving event of the respective message in
the machine representing local partner models is defined as the refining event of
the interaction. These two possible refinement definitions are called send-view and
receive-view. Message channels are modelled either as sets if they are EO channels,
or as queues if they are EOIO channels. The resulting Event-B model preserves the
structure of the original MCM, so any verification results or generated test cases can
be easily mapped back to their MCM representations.

6.2.2 Business Processes

Nowadays, business applications are usually built by integrating a broad range of
highly configurable software components and services, which can be rapidly tai-
lored to satisfy different and constantly changing business needs. Business process
models are used to describe such integration scenarios and their workflows, facili-
tating an intuitive common understanding of the business logic between customers
and developers. In addition to their use as documentation, business process models
can also be simulated, analysed and verified to reveal design errors at an early stage
of software development. BPMN has become the de facto standard business process
modelling language that is broadly adopted in industry. A typical BPMN diagram
is shown in Figure 6.3: two collaboration partners (BUYER and RETAILER) and the
flow of activities, events and messages.

Fig. 6.3 A BPMN model of an online retailer.

DRAFT



6 Business Information Sector 71

BPMN is specified using natural and graphic languages, and comes with no rig-
orous semantics defined. Therefore, there are a lot of ambiguities in it that had to
be clarified as we designed the translation into Event-B [1]. Of course, these clarifi-
cations were made to meet SAP’s specific needs. The translation works for most of
the commonly used BPMN features, including comprehensive modelling of control
flows, data modelling, compensation, message-based communication, error and ex-
ception handling, sub-processes, looping and multi-instance activities. The BPMN
features not covered in the translation are most notably choreography and conver-
sations as well as some types of flow objects, including call activities, transactions,
conditional events and complex gateways. Some of these are rarely used in practice
and would add significant complexity to the model. Others, such as transactions,
have very vague descriptions in the official BPMN specification and are difficult to
interpret.

Our translation was guided by three principles. First, the Event-B translation
should be structurally faithful to the original BPMN model so that anyone with
knowledge of the original model can easily understand the translation. Also, any
analysis result that we may obtain from the Event-B translation should be easy to
map back to the original model. Second, the translation should be designed to im-
prove provability, i.e., it should result in the automatic discharge of as many proof
obligations as possible. Finally, we are interested in verifying properties for systems
that allow multiple instances of the same processes.

We have tried two approaches for breaking down the complexity of the Event-B
models that BPMN diagrams are translated into. In the first approach [1], we exclu-
sively used the refinement relationship between machines to gradually add more and
more information from a BPMN diagram. We start with a simple Event-B machine
that contains only the control flow information of any collaboration partner, for in-
stance, the BUYER. Then, we add a second machine that refines the first machine,
and contains not only the control flow but also the data flow information of the
BUYER. Subsequently, we gradually add the control flow and data flow information
of the other partner in the machines. In the end, we use a final refining machine to
add communication details. This approach has the following advantage: if we only
want to verify a property related to the control flow of BUYER, then we can verify it
in the first machine, which is much easier than verifying it in a machine that contains
a lot of irrelevant information. However, since new information is always added to
a refining machine without losing any old information, we still get an “all-in-one”
machine which becomes difficult to apply formal methods to.

Since our goal was separation of concerns, we experimented with another ap-
proach, taking advantage of the three model decomposition tools available for
Event-B/Rodin [4]. Thus, we used modularisation, one of the decomposition tools
mimicking the way that an object-oriented language uses interfaces/encapsulation/method-
calls. The idea is to completely separate the local information of each collaboration
partner. Each partner has an interface in which several publicly callable methods
are exposed. The partner’s details are, however, hidden in a series of refining ma-
chines invisible to other partners. In the end, we add a global machine to coordinate
the interaction between partners. Such a decomposition offers a clean separation of

DRAFT



72 Sebastian Wieczorek, Vitaly Kozyura, Wei Wei, Andreas Roth and Alin Stefanescu

concerns. The detailed specification of each partner is replaceable and has no di-
rect impact on the rest of the model, provided that its interface remains unchanged.
Because of encapsulation, local behaviour can be completely verified within the
boundaries of the corresponding local partner, without information overload from
other parts of the model. Verification of global properties can use local properties
as intermediate lemmas. So, a proof procedure can be structured, and the degree of
proof reuse is considerably improved.

6.3 Formal Verification

There are two kinds of properties that we focus on. The first kind is consistencies
across different modelling layers, in particular, consistency between a global chore-
ography model and its local partner models [15, 9, 5], as well as consistency between
the MCM and the implementation models for business objects [7, 14]. The second
kind is a selected set of invariants that a model must preserve during runtime, for
example absence of deadlocks, absence of inconsumable messages in the MCM [6]
and data consistency in business processes [2, 1, 3].

We applied both theorem-proving and model-checking approaches to the verifi-
cation of the above properties. All domain-specific models were first translated into
Event-B, and automated provers and the ProB plug-in of the Rodin platform were
used to conduct verification. We could not achieve full automation of theorem prov-
ing even after several enhancements through various static analysis techniques and
proof strategy optimisations. In contrast, model checking did not require much hu-
man intervention. However, we often ran into the state explosion problem, because
checked models were usually too large for ProB to fully explore. In such cases, we
had to manually reduce the explored state space by, for example, setting bounds on
model variables. Nevertheless, we could still manage to obtain meaningful results by
combining theorem proving and model checking. For instance, we usually applied
model checking first with the hope of finding potential errors. We fixed the model
accordingly and repeated model checking until no more bugs could be found. After
that we started the more difficult and time-consuming proving procedure. Such a
strategy can save a lot of time and is quite efficient for finding model errors.

In the following, we elaborate on how we apply theorem proving and improve
automation with static analysis techniques.

6.3.1 MCM Verification

As depicted in Figure 6.4, one major goal of our work was to enforce consistency
between requirements and implementation. By introducing the MCM, we were able
to divide this complex problem into manageable pieces:

DRAFT



6 Business Information Sector 73

Fig. 6.4 Consistency relations in Choreography Modelling

• Consistency Between Requirements and Choreography Models. Require-
ments are not formalised in practice and hence applying formal methods at
this level is impossible. Therefore, enforcing consistency between choreogra-
phy models and requirements is a manual task. We found that the use of model
simulation based on ProB was usually sufficient to achieve high confidence that
the choreography model captured what was informally described in the require-
ments.

• Consistency Between Global and Local Viewpoints. There are two possible
solutions to enforcing consistency between global and local viewpoints: a gen-
erative approach, where the local views are generated from the global ones, and
a checking approach, where global and local models are created separately and
then verified for consistency with each other. In our work we implemented a
mixed approach, which starts by generating local views from global ones but per-
mits user modifications. The necessary consistency checks of manipulated views
are realised by automatic transformation and verification, based on Event-B and
Rodin.

• Consistency Between Choreography Models and Implementation. Service
components are usually described with the help of implementation models, by
specifying contained attributes (and their types) and state transition diagrams,
and describing the effects of actions (such as service calls) on the internal states
of components. We aimed to ensure consistency from choreography models to
the implementation.

Figure 6.5 shows how we integrated Rodin into the MCM prototype for verifi-
cation. The integration was made easier by the fact that both Rodin and our editor
are Eclipse-based. A developer draws an MCM model using the editor. Within the
editor, the translation of the MCM model into an Event-B model can be triggered.

DRAFT



74 Sebastian Wieczorek, Vitaly Kozyura, Wei Wei, Andreas Roth and Alin Stefanescu

The resulting Event-B project is automatically loaded, and the consistency between
the global choreography model and the local partner models is also formalised as
machine refinements (through gluing invariants). The automated provers of Rodin
then try to discharge all outstanding proof obligations (POs). A user can also inter-
act with the provers to manually discharge POs. The ProB model checker can also
be used to validate refinement relations.

Fig. 6.5 Tool architecture for MCM and verification analysis based on Event-B

We noted that in realistic scenarios MCM choreographies were not overly com-
plex. Even the complicated real examples do not exceed 10-15 protocol states and
about 20 message events. We believe that this is a consequence of a good system
architecture design that splits a complex system into manageable parts to be treated
separately. However, even at this size of choreographies, subtle communication situ-
ations like message racing and the implicitly large state space due to the datatypes of
the exchanged messages occurring in a loosely coupled environment fully justify the
automatic verification and validation techniques based on the MCM and Event-B.

Our experience showed that the automated provers were not able to automatically
discharge a large set of proof obligations generated for gluing invariants. To improve
automation, we enhanced our tool to automatically discover several kinds of invari-
ants that describe certain dependencies between global states (those in the global
choreography models) and local states (those in the local partner models) as well as
dependencies between communication channel contents and MCM states [5]. The
automated provers were then able to use these invariants as intermediate lemmas to
discharge POs. Several experiments with realistic models show that about 300 to
600 POs were generated to verify consistency after invariant generation, and it was

DRAFT



6 Business Information Sector 75

possible to automatically discharge up to 70% of them. About 80% of the remaining
POs were able to be discharged simply by manually switching to a specific prover
(an interesting phenomenon due to how Rodin implements time-outs for provers).
The rest of the POs were able to be proved manually without too much effort.

6.3.2 Several Remarks on Proof Automation

Automatic discovery and generation of invariants is an important technique for re-
ducing the difficulty of proving a property and increasing the number of automated
proofs, as illustrated in many cases. However, which invariants should be generated
depends not only on the types of models being verified, but also largely on the spe-
cific characteristics of the individual models. For instance, for a business process
model, it is important to have invariants specifying control flow dependencies and
message flow dependencies [1]. For a business process involving data persistence, it
is always helpful to discover additional dependencies between data flow and control
flow. It is therefore hard to devise an automated algorithm to discover invariants for
arbitrary models.

Another improvement to proof automation was achieved by making use of the
Relevance Filter plug-in for the Rodin platform [35]. Using heuristics, the plug-in
tries to pick most relevant and useful proof hypotheses from what is usually a very
large pool of those. The use of this tool allowed a promising increase in the number
of automatically discharged POs.

Inside SAP, we also developed a technique to better present the feedback from
automated provers to designers, in case proofs fail to be derived [10]. The basic idea
is to visualise the set of those states in the model that are associated with a certain
proof step. The visualisation can be helpful in indicating and revealing potential er-
rors in the design. We further enhanced this technique to allow a user to interact
with the visualised state. For instance, the current state may ask the user to choose
between two nondeterministic branches. By selecting one, the user is actually help-
ing make a proof decision about which part of a disjunction should be focused on in
the following proof.

We also discovered that the translation from a modelling language to Event-B
can affect the level of proof automation. In proving consistency between the MCM
and an implementation model [7], we used logic formulas with quantifiers to define
semantics for the implementation model in the beginning. This proved to be inef-
fective since automated provers have always had great difficulties with quantifiers.
Therefore, we decided to replace quantifiers with set operations, which automated
provers can deal with better, using powerful simplification tools. After that we saw
a large increase in the number of automated proofs.

No matter how much effort we have put into increasing the degree of proof
automation, in almost every case there are always some POs that require manual
proofs. Even though the percentage of undischarged POs is quite low, their actual
number is not small, and they are usually difficult to prove. This requires great

DRAFT



76 Sebastian Wieczorek, Vitaly Kozyura, Wei Wei, Andreas Roth and Alin Stefanescu

knowledge and skills in theorem proving, which is not something we can expect
from average developers and designers. Formal method experts could be hired to
solve the manual proof problem. However, it would still be a challenge to blend
formal verification seamlessly and frictionlessly into software development in such
a way that it supports other development activities without restricting or slowing
down the whole process.

6.4 Model-Based Testing

It is hard to achieve full confidence in the correctness of software . Therefore, we
focus on finding bugs with the help of software models in the last phase of deploy-
ment. Software models are very useful in guiding test designs, because they capture
the essence of how software is supposed to behave. For instance, MCMs were used
to automatically derive conceptual test cases, which can be easily mapped to ac-
tual test cases that run on the system under test [9]. According to the pilot users,
the automatically generated test suites were covering all tests that had been previ-
ously created manually. Another advantage of model-based testing is its complete
automation. Test designers only need to create an initial test model which is most
of the time very intuitive, because we designed test models to be similar to domain-
specific ones that test designers are familiar with. MBT proved to be non-intrusive
and very productive, replacing what is usually very tedious manual tasks of design-
ing and creating test cases.

In this section, we illustrate how we apply model-based scenario testing to the
existing business processes.

6.4.1 Scenario Testing of Business Process

As scenario testing is usually conducted on the user interface, we started working on
MBT for graphical user interface (GUI) testing [14, 11, 12], which was a less studied
research subject. Figure 6.6 depicts the envisioned testing approach that defined our
deployment plan. Scenario testing is carried out when the whole system (or at least
a major part of it) is developed and test-ready. The following describes the particular
steps of this approach.

1. Consultants, key customers and development architects derive business process
models for a new product or feature or customer implementation so as to meet
the market’s or customers’ requirements and based on SAP’s expertise in indus-
try’s best practice.

2. The created content, which effectively describes the usage scenarios of the new
functionality, is used to generate test model skeletons. This step should be made
automatic by using model transformation techniques.

DRAFT



6 Business Information Sector 77

Fig. 6.6 Envisioned testing process

3. The test models are then enhanced by test engineers in such a way that they
reflect previously defined test goals and pin down the specifics of the concrete
software architecture.

4. From the test models, abstract test suites are derived automatically, using MBT
techniques.

5. The abstract test suites are optimised according to industrial best practices (e.g.,
by minimising test case lengths while preserving test coverage). After further
concretisations, the optimised suite is automatically executed on the user inter-
face of the system under test.

In order to realise the envisioned deployment, we integrated various components
into a testing framework productively used at SAP. Figure 6.7 presents the main
blocks of this framework, including our components. The Test Environment offers
UI-based keyword-driven testing capabilities through a Scenario Editor, which al-
lows us to assemble captured test scripts and to visualise the generated executable
scenarios (obtained from test cases). The scripts can be recorded through the Script
Recorder component, which is connected to the System Under Test (SUT) for this
purpose. Besides capturing user interactions on the SUT, the Script Recorder of-
fers replay functionality, which is utilised for the stepwise execution of scenarios.
Together with the SUT and the Back-end Repository, it assembles the original setup.

We extended the test environment by creating and integrating the Test Model
Editor, which allows process-based test models to be created and edited. It further
enables the triggering of the test generation and the visualisation of the resulting test
suite.

DRAFT



78 Sebastian Wieczorek, Vitaly Kozyura, Wei Wei, Andreas Roth and Alin Stefanescu

Fig. 6.7 Architecture of the MBT environment.

In order to mitigate the risk of dependency on one single test generation tech-
nology, our goal was to integrate multiple tools and vendors, which we achieved by
providing transformations from process-based test models (TMs) to abstract state
transition machines (STMs); these can be further transformed into vendor-specific
input formats in a straightforward manner. Due to the lack of a standardised inter-
mediate format, we created a proprietary STM. However, we published its concepts
[12] and are active in contributing them to the various emerging standardisation ini-
tiatives. A proxy has been set up for routing the test generation requests in order to
obtain a single communication partner, which allows us to add and update generator
components without additional configuration of the test environment.

General-purpose MBT tools rely on various strategies to reduce the large initial
test suites they produce during test generation. Therefore we decided to offer unified
test suite optimisation independent of the chosen test generator. This further allows
us to consider custom requirements for the enterprise software domain. The different
optimisation procedures are wrapped in another set of web services and can be used
in the following way. After the test generation succeeds, the resulting traces are
transformed into an intermediate test suite format and sent to the proxy component,
which forwards them to an appropriate Suite Optimizer.

The test reduction is implemented on the intermediate format for test suites.
Therefore, a further transformation of the results in the Suite Optimizer is not nec-
essary. The proxy takes the reduced test suite and routes it back to the Test Model
Editor, where it will be used to create the concrete test suite, containing executable
scenarios.

Besides enabling the seamless integration of the Test Model Editor, detaching the
test environment from the test generation services has the following advantages:

DRAFT



6 Business Information Sector 79

• Reuse: By using a generic input and output format, we are able to hide the com-
plexity of the specific model transformations into the input format of concrete
test generators, thus making MBT accessible as a service to other potential test
environments.

• Performance: Decoupling expensive computational functionality like test gen-
eration and test suite reduction promises better system performance and does not
block front-end users. Replication of the Web services and introduction of load
balancing to the proxy further increases scalability.

• Maintenance: The service-based decoupling in combination with a proxy further
allows us to maintain and upgrade test generation components in a non-intrusive
way.

6.4.2 Results

After prototyping, creation and integration of the components described in the pre-
vious section, we turned to one of SAP’s major product areas in order to negotiate
an evaluation strategy. It was agreed to set up a case study with seven development
teams, which were asked to apply MBT in their scenario testing activities for a spe-
cific internal release. During their activities, the team members were asked to collect
requirements and report bugs. At the end of the case study, further interview sessions
were carried out with the participants, in order to get their overall assessment of the
tool as well as information about their productivity and perceived learning effort.
These results were consolidated and presented to the executive board of the product
area, which consequently decided on triggering an unrestricted roll-out to internal
development teams. As information about product and development activities have
to be handled with discretion (especially quality-related information), we will report
the findings of the case study in a more general way.

Case Study Participants. The participants did not have a background in formal
methods but knew the basic concepts of business process modelling and were famil-
iar with the concrete business process they wanted to cover with different scenario
tests. They were further trained and experienced in the use of the proprietary test-
ing environment, but did not have any knowledge about MBT. At the beginning of
the case study, they received a two-hour tutorial on additional modelling and testing
concepts necessary for understanding and operating our tool extension as well as
additional documentation and guiding samples. Furthermore, all participants could
rely on remote expert support for any tooling, technology or process-related ques-
tions. On average, these support activities amounted to about one additional hour
per participant.

Requirements Analysis. Over the course of the case study, the participants col-
lected 47 different requirements and ranked them based on their importance from 1
(an absolute showstopper) to 5 (nice to have). In the two-month period of evaluation
we were able to incorporate all requirements ranked at 1 and 2 and most of 3. The
remaining requirements mainly concerned the automation of additional steps in the

DRAFT



80 Sebastian Wieczorek, Vitaly Kozyura, Wei Wei, Andreas Roth and Alin Stefanescu

test generation process, which do not directly relate to test generation and had been
manual in the original process, too (e.g., the linking of created test cases with test
plans), or even addressed issues in the original test environment. Overall, only one
requirement concerned the enhancement of the test generation functionality, while
the others mainly dealt with usability issues.

Interview Sessions. Each participant was interviewed after the case study. All
stated that the maturity of the tool improved dramatically during the evaluation
phase, and agreed on the conclusion that both the tool and the new testing pro-
cess were mature enough for broad use inside the organisation. Furthermore, it was
confirmed that the learning effort was small and the approach quite intuitive. The us-
ability of the test model editor still left room for improvement, but was comparable
to other internally used tools. It was a common observation that the MBT approach
demanded greater care in the script recoding and test data definition activities. How-
ever, this was generally perceived as a positive side-effect.

Based on the requirements analysis and interview sessions, the executive board
gained enough confidence to decide on a phased roll-out of model-based scenario
testing to the whole product area. This roll-out will be accompanied by the hand-
over of responsibility from our research unit to an operations team for the main-
tenance and further improvement of the tooling that was created in the context of
DEPLOY.

6.5 Conclusion

Formal modelling and verification brings many quality assurance advantages to the
development of business software. Design documents are complemented with soft-
ware models that are accurate, executable, analysable, and can be used in deriving
test cases directly linked to requirements. Formal validation and verification is not
only used to prove correctness, but also to effectively find bugs, which is a nice
alternative to traditional testing.

However, given the assumption that formal methods are hidden behind the ex-
isting domain-specific modelling abstractions, their success relies on the degree of
automation. This is attested by the fact that model-based testing was more widely
accepted by developers than formal verification, because MBT is fully automated.
Users are not bothered by the technical details of test generation. They construct
a test model that looks like a business process, and with a push of the button, test
cases are generated and can be immediately run without any further effort. With for-
mal verification, we are still in the process of increasing the degree of automation,
to make tool usage and feedback more user-friendly, and to improve tool efficiency
when dealing with large software models. Nevertheless, our pilot deployment of
MCM verification is very promising and welcomed by software architects and de-
signers. We will continue to work toward a seamless experience of using formal
methods in business software development processes.

DRAFT



6 Business Information Sector 81

References

1. Bryans J. and Wei W.: Formal analysis of BPMN models using Event-B. In Kowalewski
S. and Roveri M. (eds.) FMICS, volume 6371 of Lecture Notes in Computer Science, pages
33–49. Springer, 2010.

2. Bryans J., Fitzgerald J., Romanovsky A. and Roth A.: Formal modelling and analysis of
business information applications with fault tolerant middleware. In ICECCS, pages 68–77.
IEEE Computer Society, 2009.

3. Bryans J., Fitzgerald J., Romanovsky A. and Roth A.: Patterns for modelling time and con-
sistency in business information systems. In Calinescu R., Paige R. F. and Kwiatkowska M.
Z. (eds.) ICECCS, pages 105–114. IEEE Computer Society, 2010.

4. Hoang T.-S., Iliasov A., Silva R. and Wei W.: A survey on Event-B decomposition. In
Automated Verification of Critical Systems AVOCS-2011. Electronic Communications of the
EASST, Volume 46. 2012.

5. Kozyura V. and Roth A.: Generation of gluing invariants for checking local enforceability
of message choreographies. In Jastram M., Laibinis L., Lösch F. and Mazzara M. (eds.)
Proceedings of DEPLOY Technical Workshop 2009. Newcastle University, Technical Report,
2009.

6. Kozyura V., Roth A. and Wei W.: Local enforceability and inconsumable messages in chore-
ography models. In Proceedings of 4th South-East European Workshop on Formal Methods
(SEEFM). IEEE Computer Society, 2009.

7. Kozyura V., Roth A., Wieczorek S. and Wei W.: Checking consistency between message
choreographies and their implementation models. ECEASST, 35, 2010.

8. Röder J.: Relevance filters for Event-B. Master’s thesis, ETH Zürich, 2010.
9. Roth A., Wieczorek S., Kozyura V., Wei W. and Wieczorek S.: DEPLOY Deliverable D4.1:

Report on Pilot Deployment in Business Information Sector. Technical report, FP7-DEPLOY
project, EU, 2010. published at http://www.deploy-project.eu/.

10. Schur M.: User interaction in formal verification of service choreography models. Master’s
thesis, Hochschule Karlsruhe Technik und Wirtschaft, 2009.

11. Wieczorek S. and Stefanescu A.: Improving testing of enterprise systems by model-based
testing on graphical user interfaces. In Sterritt R., Eames B. and Sprinkle J. (eds.) ECBS,
pages 352–357. IEEE Computer Society, 2010.

12. Wieczorek S., Kozyura V. and Schur M.: Practical model-based testing of user scenarios. In
ICIT12. IEEE, to appear, 2012.

13. Wieczorek S., Kozyura V., Roth A., Leuschel M., Bendisposto J., Plagge D. and Schiefer-
decker I.: Applying model checking to generate model-based integration tests from chore-
ography models. In Núñez M., Baker P. and Merayo M. G. (eds.) TestCom/FATES, volume
5826 of Lecture Notes in Computer Science, pages 179–194. Springer, 2009.

14. Wieczorek S., Kozyura V., Wei W. and Roth A.: DEPLOY Deliverable D4.2: Report on En-
hanced Deployment in Business Information Sector. Technical report, FP7-DEPLOY project,
EU, 2011. published at http://www.deploy-project.eu/.

15. Wieczorek S., Roth A., Stefanescu A., Kozyura V., Charfi A., Kraft F. M. and Schiefer-
decker I.: Viewpoints for modeling choreographies in service-oriented architectures. In
WICSA/ECSA, pages 11–20. IEEE, 2009.

16. Wieczorek S., Stefanescu A. and Roth A.: Model-driven service integration testing – a case
study. In QUATIC’10. IEEE Computer Society, 2010.

DRAFT




